如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
我通过简化公式来简化计算。
下面是Ruby版本:
include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }
# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
from, to = coord_radians[from], coord_radians[to]
cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
sines_product = sin(to[:lat]) * sin(from[:lat])
return earth_radius_mi * acos(cosines_product + sines_product)
end
其他回答
下面是一个Scala实现:
def calculateHaversineDistance(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double = {
val long2 = lon2 * math.Pi / 180
val lat2 = lat2 * math.Pi / 180
val long1 = lon1 * math.Pi / 180
val lat1 = lat1 * math.Pi / 180
val dlon = long2 - long1
val dlat = lat2 - lat1
val a = math.pow(math.sin(dlat / 2), 2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon / 2), 2)
val c = 2 * math.atan2(Math.sqrt(a), math.sqrt(1 - a))
val haversineDistance = 3961 * c // 3961 = radius of earth in miles
haversineDistance
}
我通过简化公式来简化计算。
下面是Ruby版本:
include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }
# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
from, to = coord_radians[from], coord_radians[to]
cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
sines_product = sin(to[:lat]) * sin(from[:lat])
return earth_radius_mi * acos(cosines_product + sines_product)
end
哈弗辛公式在大多数情况下都是很好的公式,其他答案已经包含了它所以我就不占用空间了。但重要的是要注意,无论使用什么公式(是的,不仅仅是一个)。因为可能的精度范围很大,以及所需的计算时间。公式的选择需要更多的思考,而不是简单的无脑答案。
这个帖子来自nasa的一个人,是我在讨论这些选项时发现的最好的一个
http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
例如,如果您只是在100英里半径内按距离对行进行排序。地平公式比哈弗辛公式快得多。
HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/
a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;
注意这里只有一个余弦和一个平方根。在哈弗辛公式中有9个。
在提供的代码中有一些错误,我在下面修复了它。
以上所有答案都假定地球是一个球体。然而,更精确的近似是扁球体。
a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km
def Distance(lat1, lons1, lat2, lons2):
lat1=math.radians(lat1)
lons1=math.radians(lons1)
R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
x1=R1*math.cos(lat1)*math.cos(lons1)
y1=R1*math.cos(lat1)*math.sin(lons1)
z1=R1*math.sin(lat1)
lat2=math.radians(lat2)
lons2=math.radians(lons2)
R2=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
x2=R2*math.cos(lat2)*math.cos(lons2)
y2=R2*math.cos(lat2)*math.sin(lons2)
z2=R2*math.sin(lat2)
return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5
数学有问题,LUA的学位…如果有人知道修复,请清理这段代码!
与此同时,这里有一个Haversine在LUA中的实现(与Redis一起使用!)
function calcDist(lat1, lon1, lat2, lon2)
lat1= lat1*0.0174532925
lat2= lat2*0.0174532925
lon1= lon1*0.0174532925
lon2= lon2*0.0174532925
dlon = lon2-lon1
dlat = lat2-lat1
a = math.pow(math.sin(dlat/2),2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon/2),2)
c = 2 * math.asin(math.sqrt(a))
dist = 6371 * c -- multiply by 0.621371 to convert to miles
return dist
end
干杯!