如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

我通过简化公式来简化计算。

下面是Ruby版本:

include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }

# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
  from, to = coord_radians[from], coord_radians[to]
  cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
  sines_product = sin(to[:lat]) * sin(from[:lat])
  return earth_radius_mi * acos(cosines_product + sines_product)
end

其他回答

在Mysql中使用以下函数传递参数,使用POINT(LONG,LAT)

CREATE FUNCTION `distance`(a POINT, b POINT)
 RETURNS double
    DETERMINISTIC
BEGIN

RETURN

GLength( LineString(( PointFromWKB(a)), (PointFromWKB(b)))) * 100000; -- To Make the distance in meters

END;

这是一个简单的PHP函数,它将给出一个非常合理的近似值(误差小于+/-1%)。

<?php
function distance($lat1, $lon1, $lat2, $lon2) {

    $pi80 = M_PI / 180;
    $lat1 *= $pi80;
    $lon1 *= $pi80;
    $lat2 *= $pi80;
    $lon2 *= $pi80;

    $r = 6372.797; // mean radius of Earth in km
    $dlat = $lat2 - $lat1;
    $dlon = $lon2 - $lon1;
    $a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
    $c = 2 * atan2(sqrt($a), sqrt(1 - $a));
    $km = $r * $c;

    //echo '<br/>'.$km;
    return $km;
}
?>

如前所述;地球不是一个球体。它就像马克·麦奎尔决定用来练习的一个很旧很旧的棒球——到处都是凹痕和凸起。简单的计算(像这样)把它当作一个球体。

不同的方法或多或少的精确取决于你在这个不规则的卵形上的位置以及你的点之间的距离(它们越近,绝对误差范围就越小)。你的期望越精确,计算就越复杂。

更多信息:维基百科地理距离

下面是Haversine公式的java实现。

public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
  double venueLat, double venueLng) {

    double latDistance = Math.toRadians(userLat - venueLat);
    double lngDistance = Math.toRadians(userLng - venueLng);

    double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
      + Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
      * Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);

    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));

    return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}

请注意,这里我们将答案四舍五入到最近的km。

我不喜欢添加另一个答案,但谷歌地图API v.3具有球形几何(以及更多)。在将你的WGS84转换为十进制度后,你可以这样做:

<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>  

distance = google.maps.geometry.spherical.computeDistanceBetween(
    new google.maps.LatLng(fromLat, fromLng), 
    new google.maps.LatLng(toLat, toLng));

关于谷歌的计算有多精确,甚至使用了什么模型都没有任何消息(尽管它说的是“球面”而不是“大地水准面”。顺便说一下,“直线”距离显然不同于一个人在地球表面旅行的距离,而这似乎是每个人都在假设的。

这个链接可能对你有帮助,因为它详细介绍了使用哈弗辛公式来计算距离。

摘录:

这个脚本计算两点之间的大圆距离 也就是说,在地球表面上的最短距离-使用 “半正矢”公式。

function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
  var R = 6371; // Radius of the earth in km
  var dLat = deg2rad(lat2-lat1);  // deg2rad below
  var dLon = deg2rad(lon2-lon1); 
  var a = 
    Math.sin(dLat/2) * Math.sin(dLat/2) +
    Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * 
    Math.sin(dLon/2) * Math.sin(dLon/2)
    ; 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  var d = R * c; // Distance in km
  return d;
}

function deg2rad(deg) {
  return deg * (Math.PI/180)
}