如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
在提供的代码中有一些错误,我在下面修复了它。
以上所有答案都假定地球是一个球体。然而,更精确的近似是扁球体。
a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km
def Distance(lat1, lons1, lat2, lons2):
lat1=math.radians(lat1)
lons1=math.radians(lons1)
R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
x1=R1*math.cos(lat1)*math.cos(lons1)
y1=R1*math.cos(lat1)*math.sin(lons1)
z1=R1*math.sin(lat1)
lat2=math.radians(lat2)
lons2=math.radians(lons2)
R2=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
x2=R2*math.cos(lat2)*math.cos(lons2)
y2=R2*math.cos(lat2)*math.sin(lons2)
z2=R2*math.sin(lat2)
return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5
其他回答
function getDistanceFromLatLonInKm(position1, position2) {
"use strict";
var deg2rad = function (deg) { return deg * (Math.PI / 180); },
R = 6371,
dLat = deg2rad(position2.lat - position1.lat),
dLng = deg2rad(position2.lng - position1.lng),
a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
+ Math.cos(deg2rad(position1.lat))
* Math.cos(deg2rad(position2.lat))
* Math.sin(dLng / 2) * Math.sin(dLng / 2),
c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return R * c;
}
console.log(getDistanceFromLatLonInKm(
{lat: 48.7931459, lng: 1.9483572},
{lat: 48.827167, lng: 2.2459745}
));
如果你正在使用python; PIP安装地质
from geopy.distance import geodesic
origin = (30.172705, 31.526725) # (latitude, longitude) don't confuse
destination = (30.288281, 31.732326)
print(geodesic(origin, destination).meters) # 23576.805481751613
print(geodesic(origin, destination).kilometers) # 23.576805481751613
print(geodesic(origin, destination).miles) # 14.64994773134371
这里有一个用PHP http://www.geodatasource.com/developers/php计算距离的好例子:
function distance($lat1, $lon1, $lat2, $lon2, $unit) {
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
} else if ($unit == "N") {
return ($miles * 0.8684);
} else {
return $miles;
}
}
这个链接可能对你有帮助,因为它详细介绍了使用哈弗辛公式来计算距离。
摘录:
这个脚本计算两点之间的大圆距离 也就是说,在地球表面上的最短距离-使用 “半正矢”公式。
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}
要计算球体上两点之间的距离,你需要做大圆计算。
如果你需要将距离重新投影到平面上,MapTools中有许多C/ c++库可以帮助你进行地图投影。要做到这一点,你需要不同坐标系的投影字符串。
你可能还会发现MapWindow是一个可视化点的有用工具。此外,由于它是开源的,它是如何使用project.dll库的有用指南,它似乎是核心的开源投影库。