如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
对于那些寻找基于WGS-84和GRS-80标准的Excel公式的人:
=ACOS(COS(RADIANS(90-Lat1))*COS(RADIANS(90-Lat2))+SIN(RADIANS(90-Lat1))*SIN(RADIANS(90-Lat2))*COS(RADIANS(Long1-Long2)))*6371
源
其他回答
可能有一个更简单、更正确的解决方案:地球的周长在赤道上是40000公里,在格林威治(或任何经度)周期上约为37000公里。因此:
pythagoras = function (lat1, lon1, lat2, lon2) {
function sqr(x) {return x * x;}
function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}
var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
var dy = 37000000.0 * (lat1 - lat2) / 360.0;
return Math.sqrt(sqr(dx) + sqr(dy));
};
我同意它应该被微调,我自己说过它是一个椭球,所以半径乘以余弦值是不同的。但它更准确一点。与谷歌map相比,误差明显减小。
下面是一个c#实现:
static class DistanceAlgorithm
{
const double PIx = 3.141592653589793;
const double RADIUS = 6378.16;
/// <summary>
/// Convert degrees to Radians
/// </summary>
/// <param name="x">Degrees</param>
/// <returns>The equivalent in radians</returns>
public static double Radians(double x)
{
return x * PIx / 180;
}
/// <summary>
/// Calculate the distance between two places.
/// </summary>
/// <param name="lon1"></param>
/// <param name="lat1"></param>
/// <param name="lon2"></param>
/// <param name="lat2"></param>
/// <returns></returns>
public static double DistanceBetweenPlaces(
double lon1,
double lat1,
double lon2,
double lat2)
{
double dlon = Radians(lon2 - lon1);
double dlat = Radians(lat2 - lat1);
double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
return angle * RADIUS;
}
}
我不喜欢添加另一个答案,但谷歌地图API v.3具有球形几何(以及更多)。在将你的WGS84转换为十进制度后,你可以这样做:
<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>
distance = google.maps.geometry.spherical.computeDistanceBetween(
new google.maps.LatLng(fromLat, fromLng),
new google.maps.LatLng(toLat, toLng));
关于谷歌的计算有多精确,甚至使用了什么模型都没有任何消息(尽管它说的是“球面”而不是“大地水准面”。顺便说一下,“直线”距离显然不同于一个人在地球表面旅行的距离,而这似乎是每个人都在假设的。
你可以用Haversine公式计算它,它是:
a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
c = 2 ⋅ atan2( √a, √(1−a) )
d = R ⋅ c
下面给出了一个计算两点之间距离的例子
假设我要计算从新德里到伦敦的距离,那么我该如何使用这个公式:
New delhi co-ordinates= 28.7041° N, 77.1025° E
London co-ordinates= 51.5074° N, 0.1278° W
var R = 6371e3; // metres
var φ1 = 28.7041.toRadians();
var φ2 = 51.5074.toRadians();
var Δφ = (51.5074-28.7041).toRadians();
var Δλ = (0.1278-77.1025).toRadians();
var a = Math.sin(Δφ/2) * Math.sin(Δφ/2) +
Math.cos(φ1) * Math.cos(φ2) *
Math.sin(Δλ/2) * Math.sin(Δλ/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // metres
d = d/1000; // km
在其他答案中,r中的实现是缺失的。
用地质圈包中的distm函数计算两点之间的距离非常简单:
distm(p1, p2, fun = distHaversine)
地点:
p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid
由于地球不是完美的球形,所以椭球体的文森提公式可能是计算距离的最佳方法。因此,在地质圈包中,您可以使用:
distm(p1, p2, fun = distVincentyEllipsoid)
当然,你不一定要使用geosphere包,你也可以用一个函数来计算以R为基底的距离:
hav.dist <- function(long1, lat1, long2, lat2) {
R <- 6371
diff.long <- (long2 - long1)
diff.lat <- (lat2 - lat1)
a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
b <- 2 * asin(pmin(1, sqrt(a)))
d = R * b
return(d)
}