如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

对于那些寻找基于WGS-84和GRS-80标准的Excel公式的人:

=ACOS(COS(RADIANS(90-Lat1))*COS(RADIANS(90-Lat2))+SIN(RADIANS(90-Lat1))*SIN(RADIANS(90-Lat2))*COS(RADIANS(Long1-Long2)))*6371

其他回答

你可以使用CLLocationDistance中的构建来计算这个:

CLLocation *location1 = [[CLLocation alloc] initWithLatitude:latitude1 longitude:longitude1];
CLLocation *location2 = [[CLLocation alloc] initWithLatitude:latitude2 longitude:longitude2];
[self distanceInMetersFromLocation:location1 toLocation:location2]

- (int)distanceInMetersFromLocation:(CLLocation*)location1 toLocation:(CLLocation*)location2 {
    CLLocationDistance distanceInMeters = [location1 distanceFromLocation:location2];
    return distanceInMeters;
}

在你的例子中,如果你想要公里,只要除以1000。

非常感谢这一切。我在Objective-C iPhone应用程序中使用了以下代码:

const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km

double convertToRadians(double val) {

   return val * PIx / 180;
}

-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {

        double dlon = convertToRadians(place2.longitude - place1.longitude);
        double dlat = convertToRadians(place2.latitude - place1.latitude);

        double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
        double angle = 2 * asin(sqrt(a));

        return angle * RADIO;
}

纬度和经度是十进制的。我没有在asin()调用中使用min(),因为我使用的距离非常小,以至于它们不需要min()。

它给出了错误的答案,直到我传入弧度的值-现在它几乎与从苹果地图应用程序中获得的值相同:-)

额外的更新:

如果你使用的是iOS4或更高版本,那么苹果会提供一些方法来实现相同的功能:

-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {

    MKMapPoint  start, finish;


    start = MKMapPointForCoordinate(place1);
    finish = MKMapPointForCoordinate(place2);

    return MKMetersBetweenMapPoints(start, finish) / 1000;
}

下面是Erlang实现

lat_lng({Lat1, Lon1}=_Point1, {Lat2, Lon2}=_Point2) ->
  P = math:pi() / 180,
  R = 6371, % Radius of Earth in KM
  A = 0.5 - math:cos((Lat2 - Lat1) * P) / 2 +
    math:cos(Lat1 * P) * math:cos(Lat2 * P) * (1 - math:cos((Lon2 - Lon1) * P))/2,
  R * 2 * math:asin(math:sqrt(A)).

你可以用Haversine公式计算它,它是:

a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
c = 2 ⋅ atan2( √a, √(1−a) )
d = R ⋅ c

下面给出了一个计算两点之间距离的例子

假设我要计算从新德里到伦敦的距离,那么我该如何使用这个公式:

New delhi co-ordinates= 28.7041° N, 77.1025° E
London co-ordinates= 51.5074° N, 0.1278° W

var R = 6371e3; // metres
var φ1 = 28.7041.toRadians();
var φ2 = 51.5074.toRadians();
var Δφ = (51.5074-28.7041).toRadians();
var Δλ = (0.1278-77.1025).toRadians();

var a = Math.sin(Δφ/2) * Math.sin(Δφ/2) +
        Math.cos(φ1) * Math.cos(φ2) *
        Math.sin(Δλ/2) * Math.sin(Δλ/2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));

var d = R * c; // metres
d = d/1000; // km

在其他答案中,r中的实现是缺失的。

用地质圈包中的distm函数计算两点之间的距离非常简单:

distm(p1, p2, fun = distHaversine)

地点:

p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid 

由于地球不是完美的球形,所以椭球体的文森提公式可能是计算距离的最佳方法。因此,在地质圈包中,您可以使用:

distm(p1, p2, fun = distVincentyEllipsoid)

当然,你不一定要使用geosphere包,你也可以用一个函数来计算以R为基底的距离:

hav.dist <- function(long1, lat1, long2, lat2) {
  R <- 6371
  diff.long <- (long2 - long1)
  diff.lat <- (lat2 - lat1)
  a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
  b <- 2 * asin(pmin(1, sqrt(a))) 
  d = R * b
  return(d)
}