如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
如果你想要驾驶距离/路线(张贴在这里,因为这是谷歌上两点之间距离的第一个结果,但对大多数人来说,驾驶距离更有用),你可以使用谷歌地图距离矩阵服务:
getDrivingDistanceBetweenTwoLatLong(origin, destination) {
return new Observable(subscriber => {
let service = new google.maps.DistanceMatrixService();
service.getDistanceMatrix(
{
origins: [new google.maps.LatLng(origin.lat, origin.long)],
destinations: [new google.maps.LatLng(destination.lat, destination.long)],
travelMode: 'DRIVING'
}, (response, status) => {
if (status !== google.maps.DistanceMatrixStatus.OK) {
console.log('Error:', status);
subscriber.error({error: status, status: status});
} else {
console.log(response);
try {
let valueInMeters = response.rows[0].elements[0].distance.value;
let valueInKms = valueInMeters / 1000;
subscriber.next(valueInKms);
subscriber.complete();
}
catch(error) {
subscriber.error({error: error, status: status});
}
}
});
});
}
其他回答
仅限飞镖:
import 'dart:math' show cos, sqrt, asin;
double calculateDistance(LatLng l1, LatLng l2) {
const p = 0.017453292519943295;
final a = 0.5 -
cos((l2.latitude - l1.latitude) * p) / 2 +
cos(l1.latitude * p) *
cos(l2.latitude * p) *
(1 - cos((l2.longitude - l1.longitude) * p)) /
2;
return 12742 * asin(sqrt(a));
}
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2,units) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c;
var miles = d / 1.609344;
if ( units == 'km' ) {
return d;
} else {
return miles;
}}
查克的解决方案,也适用于英里。
这是一个简单的javascript函数,从这个链接可能是有用的。不知何故相关,但我们使用谷歌地球javascript插件而不是地图
function getApproximateDistanceUnits(point1, point2) {
var xs = 0;
var ys = 0;
xs = point2.getX() - point1.getX();
xs = xs * xs;
ys = point2.getY() - point1.getY();
ys = ys * ys;
return Math.sqrt(xs + ys);
}
单位不是距离,而是相对于坐标的比率。还有其他相关的计算,你可以在这里代替getApproximateDistanceUnits函数链接
然后我使用这个函数来查看经纬度是否在半径内
function isMapPlacemarkInRadius(point1, point2, radi) {
if (point1 && point2) {
return getApproximateDistanceUnits(point1, point2) <= radi;
} else {
return 0;
}
}
点可以定义为
$$.getPoint = function(lati, longi) {
var location = {
x: 0,
y: 0,
getX: function() { return location.x; },
getY: function() { return location.y; }
};
location.x = lati;
location.y = longi;
return location;
};
然后你可以做你的事情,看看一个点是否在一个半径范围内,比如:
//put it on the map if within the range of a specified radi assuming 100,000,000 units
var iconpoint = Map.getPoint(pp.latitude, pp.longitude);
var centerpoint = Map.getPoint(Settings.CenterLatitude, Settings.CenterLongitude);
//approx ~200 units to show only half of the globe from the default center radius
if (isMapPlacemarkInRadius(centerpoint, iconpoint, 120)) {
addPlacemark(pp.latitude, pp.longitude, pp.name);
}
else {
otherSidePlacemarks.push({
latitude: pp.latitude,
longitude: pp.longitude,
name: pp.name
});
}
下面是一个Scala实现:
def calculateHaversineDistance(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double = {
val long2 = lon2 * math.Pi / 180
val lat2 = lat2 * math.Pi / 180
val long1 = lon1 * math.Pi / 180
val lat1 = lat1 * math.Pi / 180
val dlon = long2 - long1
val dlat = lat2 - lat1
val a = math.pow(math.sin(dlat / 2), 2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon / 2), 2)
val c = 2 * math.atan2(Math.sqrt(a), math.sqrt(1 - a))
val haversineDistance = 3961 * c // 3961 = radius of earth in miles
haversineDistance
}
精确计算中长点之间距离所需的函数是复杂的,陷阱也很多。我不推荐哈弗辛或其他球形的解决方案,因为有很大的不准确性(地球不是一个完美的球体)。vincenty公式更好,但在某些情况下会抛出错误,即使编码正确。
与其自己编写函数,我建议使用geopy,它已经实现了非常精确的地理库来进行距离计算(论文来自作者)。
#pip install geopy
from geopy.distance import geodesic
NY = [40.71278,-74.00594]
Beijing = [39.90421,116.40739]
print("WGS84: ",geodesic(NY, Beijing).km) #WGS84 is Standard
print("Intl24: ",geodesic(NY, Beijing, ellipsoid='Intl 1924').km) #geopy includes different ellipsoids
print("Custom ellipsoid: ",geodesic(NY, Beijing, ellipsoid=(6377., 6356., 1 / 297.)).km) #custom ellipsoid
#supported ellipsoids:
#model major (km) minor (km) flattening
#'WGS-84': (6378.137, 6356.7523142, 1 / 298.257223563)
#'GRS-80': (6378.137, 6356.7523141, 1 / 298.257222101)
#'Airy (1830)': (6377.563396, 6356.256909, 1 / 299.3249646)
#'Intl 1924': (6378.388, 6356.911946, 1 / 297.0)
#'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465)
#'GRS-67': (6378.1600, 6356.774719, 1 / 298.25)
这个库的唯一缺点是它不支持向量化计算。 对于向量化计算,您可以使用新的gevectorslib。
#pip install geovectorslib
from geovectorslib import inverse
print(inverse(lats1,lons1,lats2,lons2)['s12'])
lat和lon是numpy数组。Geovectorslib是非常准确和非常快!我还没有找到改变椭球的方法。标准采用WGS84椭球,是大多数用途的最佳选择。