如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

计算距离——尤其是大距离——的主要挑战之一是解释地球的曲率。如果地球是平的,计算两点之间的距离就会像计算直线一样简单!哈弗辛公式包括一个常数(下面是R变量),它表示地球的半径。根据你是用英里还是公里来测量,它分别等于3956英里或6367公里。 基本公式是:

Dlon = lon2 - lon1 dat = lat2 - lat1 = (sin (dlat / 2)) ^ 2 + cos (lat1) * cos (lat2) * (sin (dlon / 2)) ^ 2 C = 2 * atan2(√(a),√(1-a)) distance = R * c(其中R为地球半径) R = 6367公里OR 3956英里

     lat1, lon1: The Latitude and Longitude of point 1 (in decimal degrees)
     lat2, lon2: The Latitude and Longitude of point 2 (in decimal degrees)
     unit: The unit of measurement in which to calculate the results where:
     'M' is statute miles (default)
     'K' is kilometers
     'N' is nautical miles

样本

function distance(lat1, lon1, lat2, lon2, unit) {
    try {
        var radlat1 = Math.PI * lat1 / 180
        var radlat2 = Math.PI * lat2 / 180
        var theta = lon1 - lon2
        var radtheta = Math.PI * theta / 180
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        dist = Math.acos(dist)
        dist = dist * 180 / Math.PI
        dist = dist * 60 * 1.1515
        if (unit == "K") {
            dist = dist * 1.609344
        }
        if (unit == "N") {
            dist = dist * 0.8684
        }
        return dist
    } catch (err) {
        console.log(err);
    }
}

其他回答

计算距离——尤其是大距离——的主要挑战之一是解释地球的曲率。如果地球是平的,计算两点之间的距离就会像计算直线一样简单!哈弗辛公式包括一个常数(下面是R变量),它表示地球的半径。根据你是用英里还是公里来测量,它分别等于3956英里或6367公里。 基本公式是:

Dlon = lon2 - lon1 dat = lat2 - lat1 = (sin (dlat / 2)) ^ 2 + cos (lat1) * cos (lat2) * (sin (dlon / 2)) ^ 2 C = 2 * atan2(√(a),√(1-a)) distance = R * c(其中R为地球半径) R = 6367公里OR 3956英里

     lat1, lon1: The Latitude and Longitude of point 1 (in decimal degrees)
     lat2, lon2: The Latitude and Longitude of point 2 (in decimal degrees)
     unit: The unit of measurement in which to calculate the results where:
     'M' is statute miles (default)
     'K' is kilometers
     'N' is nautical miles

样本

function distance(lat1, lon1, lat2, lon2, unit) {
    try {
        var radlat1 = Math.PI * lat1 / 180
        var radlat2 = Math.PI * lat2 / 180
        var theta = lon1 - lon2
        var radtheta = Math.PI * theta / 180
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        dist = Math.acos(dist)
        dist = dist * 180 / Math.PI
        dist = dist * 60 * 1.1515
        if (unit == "K") {
            dist = dist * 1.609344
        }
        if (unit == "N") {
            dist = dist * 0.8684
        }
        return dist
    } catch (err) {
        console.log(err);
    }
}

这个链接可能对你有帮助,因为它详细介绍了使用哈弗辛公式来计算距离。

摘录:

这个脚本计算两点之间的大圆距离 也就是说,在地球表面上的最短距离-使用 “半正矢”公式。

function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
  var R = 6371; // Radius of the earth in km
  var dLat = deg2rad(lat2-lat1);  // deg2rad below
  var dLon = deg2rad(lon2-lon1); 
  var a = 
    Math.sin(dLat/2) * Math.sin(dLat/2) +
    Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * 
    Math.sin(dLon/2) * Math.sin(dLon/2)
    ; 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  var d = R * c; // Distance in km
  return d;
}

function deg2rad(deg) {
  return deg * (Math.PI/180)
}

要计算球体上两点之间的距离,你需要做大圆计算。

如果你需要将距离重新投影到平面上,MapTools中有许多C/ c++库可以帮助你进行地图投影。要做到这一点,你需要不同坐标系的投影字符串。

你可能还会发现MapWindow是一个可视化点的有用工具。此外,由于它是开源的,它是如何使用project.dll库的有用指南,它似乎是核心的开源投影库。

你也可以使用像geolib这样的模块:

安装方法:

$ npm install geolib

使用方法:

import { getDistance } from 'geolib'

const distance = getDistance(
    { latitude: 51.5103, longitude: 7.49347 },
    { latitude: "51° 31' N", longitude: "7° 28' E" }
)

console.log(distance)

文档: https://www.npmjs.com/package/geolib

下面是Haversine公式的typescript实现

static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
    var deg2Rad = deg => {
        return deg * Math.PI / 180;
    }

    var r = 6371; // Radius of the earth in km
    var dLat = deg2Rad(lat2 - lat1);   
    var dLon = deg2Rad(lon2 - lon1);
    var a =
        Math.sin(dLat / 2) * Math.sin(dLat / 2) +
        Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
        Math.sin(dLon / 2) * Math.sin(dLon / 2);
    var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    var d = r * c; // Distance in km
    return d;
}