如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
function getDistanceFromLatLonInKm(position1, position2) {
"use strict";
var deg2rad = function (deg) { return deg * (Math.PI / 180); },
R = 6371,
dLat = deg2rad(position2.lat - position1.lat),
dLng = deg2rad(position2.lng - position1.lng),
a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
+ Math.cos(deg2rad(position1.lat))
* Math.cos(deg2rad(position2.lat))
* Math.sin(dLng / 2) * Math.sin(dLng / 2),
c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return R * c;
}
console.log(getDistanceFromLatLonInKm(
{lat: 48.7931459, lng: 1.9483572},
{lat: 48.827167, lng: 2.2459745}
));
其他回答
哈弗辛公式在大多数情况下都是很好的公式,其他答案已经包含了它所以我就不占用空间了。但重要的是要注意,无论使用什么公式(是的,不仅仅是一个)。因为可能的精度范围很大,以及所需的计算时间。公式的选择需要更多的思考,而不是简单的无脑答案。
这个帖子来自nasa的一个人,是我在讨论这些选项时发现的最好的一个
http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
例如,如果您只是在100英里半径内按距离对行进行排序。地平公式比哈弗辛公式快得多。
HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/
a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;
注意这里只有一个余弦和一个平方根。在哈弗辛公式中有9个。
在我的项目中,我需要计算很多点之间的距离,所以我继续尝试优化我在这里找到的代码。平均而言,在不同的浏览器中,我的新实现的运行速度比获得最多好评的答案快2倍。
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
您可以在这里使用我的jsPerf并查看结果。
最近我需要在python中做同样的事情,所以这里是一个python实现:
from math import cos, asin, sqrt, pi
def distance(lat1, lon1, lat2, lon2):
p = pi/180
a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p) * cos(lat2*p) * (1-cos((lon2-lon1)*p))/2
return 12742 * asin(sqrt(a)) #2*R*asin...
为了完整起见:维基百科上的Haversine。
非常感谢这一切。我在Objective-C iPhone应用程序中使用了以下代码:
const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km
double convertToRadians(double val) {
return val * PIx / 180;
}
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
double dlon = convertToRadians(place2.longitude - place1.longitude);
double dlat = convertToRadians(place2.latitude - place1.latitude);
double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
double angle = 2 * asin(sqrt(a));
return angle * RADIO;
}
纬度和经度是十进制的。我没有在asin()调用中使用min(),因为我使用的距离非常小,以至于它们不需要min()。
它给出了错误的答案,直到我传入弧度的值-现在它几乎与从苹果地图应用程序中获得的值相同:-)
额外的更新:
如果你使用的是iOS4或更高版本,那么苹果会提供一些方法来实现相同的功能:
-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {
MKMapPoint start, finish;
start = MKMapPointForCoordinate(place1);
finish = MKMapPointForCoordinate(place2);
return MKMetersBetweenMapPoints(start, finish) / 1000;
}
可能有一个更简单、更正确的解决方案:地球的周长在赤道上是40000公里,在格林威治(或任何经度)周期上约为37000公里。因此:
pythagoras = function (lat1, lon1, lat2, lon2) {
function sqr(x) {return x * x;}
function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}
var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
var dy = 37000000.0 * (lat1 - lat2) / 360.0;
return Math.sqrt(sqr(dx) + sqr(dy));
};
我同意它应该被微调,我自己说过它是一个椭球,所以半径乘以余弦值是不同的。但它更准确一点。与谷歌map相比,误差明显减小。
对于那些寻找基于WGS-84和GRS-80标准的Excel公式的人:
=ACOS(COS(RADIANS(90-Lat1))*COS(RADIANS(90-Lat2))+SIN(RADIANS(90-Lat1))*SIN(RADIANS(90-Lat2))*COS(RADIANS(Long1-Long2)))*6371
源