如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

function getDistanceFromLatLonInKm(position1, position2) {
    "use strict";
    var deg2rad = function (deg) { return deg * (Math.PI / 180); },
        R = 6371,
        dLat = deg2rad(position2.lat - position1.lat),
        dLng = deg2rad(position2.lng - position1.lng),
        a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
            + Math.cos(deg2rad(position1.lat))
            * Math.cos(deg2rad(position2.lat))
            * Math.sin(dLng / 2) * Math.sin(dLng / 2),
        c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    return R * c;
}

console.log(getDistanceFromLatLonInKm(
    {lat: 48.7931459, lng: 1.9483572},
    {lat: 48.827167, lng: 2.2459745}
));

其他回答

要计算球体上两点之间的距离,你需要做大圆计算。

如果你需要将距离重新投影到平面上,MapTools中有许多C/ c++库可以帮助你进行地图投影。要做到这一点,你需要不同坐标系的投影字符串。

你可能还会发现MapWindow是一个可视化点的有用工具。此外,由于它是开源的,它是如何使用project.dll库的有用指南,它似乎是核心的开源投影库。

下面是Erlang实现

lat_lng({Lat1, Lon1}=_Point1, {Lat2, Lon2}=_Point2) ->
  P = math:pi() / 180,
  R = 6371, % Radius of Earth in KM
  A = 0.5 - math:cos((Lat2 - Lat1) * P) / 2 +
    math:cos(Lat1 * P) * math:cos(Lat2 * P) * (1 - math:cos((Lon2 - Lon1) * P))/2,
  R * 2 * math:asin(math:sqrt(A)).

这里有一个用PHP http://www.geodatasource.com/developers/php计算距离的好例子:

 function distance($lat1, $lon1, $lat2, $lon2, $unit) {

     $theta = $lon1 - $lon2;
     $dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) +  cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
     $dist = acos($dist);
     $dist = rad2deg($dist);
     $miles = $dist * 60 * 1.1515;
     $unit = strtoupper($unit);

     if ($unit == "K") {
         return ($miles * 1.609344);
     } else if ($unit == "N") {
          return ($miles * 0.8684);
     } else {
          return $miles;
     }
 }

精确计算中长点之间距离所需的函数是复杂的,陷阱也很多。我不推荐哈弗辛或其他球形的解决方案,因为有很大的不准确性(地球不是一个完美的球体)。vincenty公式更好,但在某些情况下会抛出错误,即使编码正确。

与其自己编写函数,我建议使用geopy,它已经实现了非常精确的地理库来进行距离计算(论文来自作者)。

#pip install geopy
from geopy.distance import geodesic
NY = [40.71278,-74.00594]
Beijing = [39.90421,116.40739]
print("WGS84: ",geodesic(NY, Beijing).km) #WGS84 is Standard
print("Intl24: ",geodesic(NY, Beijing, ellipsoid='Intl 1924').km) #geopy includes different ellipsoids
print("Custom ellipsoid: ",geodesic(NY, Beijing, ellipsoid=(6377., 6356., 1 / 297.)).km) #custom ellipsoid

#supported ellipsoids:
#model             major (km)   minor (km)     flattening
#'WGS-84':        (6378.137,    6356.7523142,  1 / 298.257223563)
#'GRS-80':        (6378.137,    6356.7523141,  1 / 298.257222101)
#'Airy (1830)':   (6377.563396, 6356.256909,   1 / 299.3249646)
#'Intl 1924':     (6378.388,    6356.911946,   1 / 297.0)
#'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465)
#'GRS-67':        (6378.1600,   6356.774719,   1 / 298.25)

这个库的唯一缺点是它不支持向量化计算。 对于向量化计算,您可以使用新的gevectorslib。

#pip install geovectorslib
from geovectorslib import inverse
print(inverse(lats1,lons1,lats2,lons2)['s12'])

lat和lon是numpy数组。Geovectorslib是非常准确和非常快!我还没有找到改变椭球的方法。标准采用WGS84椭球,是大多数用途的最佳选择。

我在R中做了一个自定义函数,使用R基本包中可用的函数来计算两个空间点之间的距离(km)。

custom_hav_dist <- function(lat1, lon1, lat2, lon2) {
R <- 6371
Radian_factor <- 0.0174533
lat_1 <- (90-lat1)*Radian_factor
lat_2 <- (90-lat2)*Radian_factor
diff_long <-(lon1-lon2)*Radian_factor

distance_in_km <- 6371*acos((cos(lat_1)*cos(lat_2))+ 
                 (sin(lat_1)*sin(lat_2)*cos(diff_long)))
rm(lat1, lon1, lat2, lon2)
return(distance_in_km)
}

样例输出

custom_hav_dist(50.31,19.08,54.14,19.39)
[1] 426.3987

PS:要计算以英里为单位的距离,请将函数R(6371)替换为3958.756(海里使用3440.065)。