如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

这个脚本[在PHP中]计算两点之间的距离。

public static function getDistanceOfTwoPoints($source, $dest, $unit='K') {
        $lat1 = $source[0];
        $lon1 = $source[1];
        $lat2 = $dest[0];
        $lon2 = $dest[1];

        $theta = $lon1 - $lon2;
        $dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) +  cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
        $dist = acos($dist);
        $dist = rad2deg($dist);
        $miles = $dist * 60 * 1.1515;
        $unit = strtoupper($unit);

        if ($unit == "K") {
            return ($miles * 1.609344);
        }
        else if ($unit == "M")
        {
            return ($miles * 1.609344 * 1000);
        }
        else if ($unit == "N") {
            return ($miles * 0.8684);
        } 
        else {
            return $miles;
        }
    }

其他回答

下面是一个Scala实现:

  def calculateHaversineDistance(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double = {
    val long2 = lon2 * math.Pi / 180
    val lat2 = lat2 * math.Pi / 180
    val long1 = lon1 * math.Pi / 180
    val lat1 = lat1 * math.Pi / 180

    val dlon = long2 - long1
    val dlat = lat2 - lat1
    val a = math.pow(math.sin(dlat / 2), 2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon / 2), 2)
    val c = 2 * math.atan2(Math.sqrt(a), math.sqrt(1 - a))
    val haversineDistance = 3961 * c // 3961 = radius of earth in miles
    haversineDistance
  }

这里有一个用PHP http://www.geodatasource.com/developers/php计算距离的好例子:

 function distance($lat1, $lon1, $lat2, $lon2, $unit) {

     $theta = $lon1 - $lon2;
     $dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) +  cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
     $dist = acos($dist);
     $dist = rad2deg($dist);
     $miles = $dist * 60 * 1.1515;
     $unit = strtoupper($unit);

     if ($unit == "K") {
         return ($miles * 1.609344);
     } else if ($unit == "N") {
          return ($miles * 0.8684);
     } else {
          return $miles;
     }
 }

下面是一个c#实现:

static class DistanceAlgorithm
{
    const double PIx = 3.141592653589793;
    const double RADIUS = 6378.16;

    /// <summary>
    /// Convert degrees to Radians
    /// </summary>
    /// <param name="x">Degrees</param>
    /// <returns>The equivalent in radians</returns>
    public static double Radians(double x)
    {
        return x * PIx / 180;
    }

    /// <summary>
    /// Calculate the distance between two places.
    /// </summary>
    /// <param name="lon1"></param>
    /// <param name="lat1"></param>
    /// <param name="lon2"></param>
    /// <param name="lat2"></param>
    /// <returns></returns>
    public static double DistanceBetweenPlaces(
        double lon1,
        double lat1,
        double lon2,
        double lat2)
    {
        double dlon = Radians(lon2 - lon1);
        double dlat = Radians(lat2 - lat1);

        double a = (Math.Sin(dlat / 2) * Math.Sin(dlat / 2)) + Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * (Math.Sin(dlon / 2) * Math.Sin(dlon / 2));
        double angle = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
        return angle * RADIUS;
    }

}

我不喜欢添加另一个答案,但谷歌地图API v.3具有球形几何(以及更多)。在将你的WGS84转换为十进制度后,你可以这样做:

<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>  

distance = google.maps.geometry.spherical.computeDistanceBetween(
    new google.maps.LatLng(fromLat, fromLng), 
    new google.maps.LatLng(toLat, toLng));

关于谷歌的计算有多精确,甚至使用了什么模型都没有任何消息(尽管它说的是“球面”而不是“大地水准面”。顺便说一下,“直线”距离显然不同于一个人在地球表面旅行的距离,而这似乎是每个人都在假设的。

精确计算中长点之间距离所需的函数是复杂的,陷阱也很多。我不推荐哈弗辛或其他球形的解决方案,因为有很大的不准确性(地球不是一个完美的球体)。vincenty公式更好,但在某些情况下会抛出错误,即使编码正确。

与其自己编写函数,我建议使用geopy,它已经实现了非常精确的地理库来进行距离计算(论文来自作者)。

#pip install geopy
from geopy.distance import geodesic
NY = [40.71278,-74.00594]
Beijing = [39.90421,116.40739]
print("WGS84: ",geodesic(NY, Beijing).km) #WGS84 is Standard
print("Intl24: ",geodesic(NY, Beijing, ellipsoid='Intl 1924').km) #geopy includes different ellipsoids
print("Custom ellipsoid: ",geodesic(NY, Beijing, ellipsoid=(6377., 6356., 1 / 297.)).km) #custom ellipsoid

#supported ellipsoids:
#model             major (km)   minor (km)     flattening
#'WGS-84':        (6378.137,    6356.7523142,  1 / 298.257223563)
#'GRS-80':        (6378.137,    6356.7523141,  1 / 298.257222101)
#'Airy (1830)':   (6377.563396, 6356.256909,   1 / 299.3249646)
#'Intl 1924':     (6378.388,    6356.911946,   1 / 297.0)
#'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465)
#'GRS-67':        (6378.1600,   6356.774719,   1 / 298.25)

这个库的唯一缺点是它不支持向量化计算。 对于向量化计算,您可以使用新的gevectorslib。

#pip install geovectorslib
from geovectorslib import inverse
print(inverse(lats1,lons1,lats2,lons2)['s12'])

lat和lon是numpy数组。Geovectorslib是非常准确和非常快!我还没有找到改变椭球的方法。标准采用WGS84椭球,是大多数用途的最佳选择。