我有一个数字向量:
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
453,435,324,34,456,56,567,65,34,435)
我如何让R计算x值在向量中出现的次数?
我有一个数字向量:
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
453,435,324,34,456,56,567,65,34,435)
我如何让R计算x值在向量中出现的次数?
你可以使用table():
> a <- table(numbers)
> a
numbers
4 5 23 34 43 54 56 65 67 324 435 453 456 567 657
2 1 2 2 1 1 2 1 2 1 3 1 1 1 1
然后你可以对它进行子集:
> a[names(a)==435]
435
3
或者将它转换为data.frame,如果你更喜欢使用它:
> as.data.frame(table(numbers))
numbers Freq
1 4 2
2 5 1
3 23 2
4 34 2
...
最直接的方法是求和(numbers == x)。
numbers == x创建一个在x出现的每个位置都为TRUE的逻辑向量,当求和时,逻辑向量被强制转换为numeric,将TRUE转换为1,FALSE转换为0。
但是,请注意,对于浮点数,最好使用如下格式:sum(abs(numbers - x) < 1e-6)。
我的首选解决方案使用rle,它将返回一个值(在您的示例中是标签x)和一个长度,它表示该值按顺序出现了多少次。
通过结合rle和sort,可以非常快速地计算任何值出现的次数。这对解决更复杂的问题很有帮助。
例子:
> numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,324,34,456,56,567,65,34,435)
> a <- rle(sort(numbers))
> a
Run Length Encoding
lengths: int [1:15] 2 1 2 2 1 1 2 1 2 1 ...
values : num [1:15] 4 5 23 34 43 54 56 65 67 324 ...
如果你想要的值没有显示,或者你需要为以后存储该值,创建一个data.frame。
> b <- data.frame(number=a$values, n=a$lengths)
> b
values n
1 4 2
2 5 1
3 23 2
4 34 2
5 43 1
6 54 1
7 56 2
8 65 1
9 67 2
10 324 1
11 435 3
12 453 1
13 456 1
14 567 1
15 657 1
我发现我很少想知道一个值的频率,而不是所有值的频率,rle似乎是获得计数和存储所有值的最快方法。
另外一个我觉得方便的方法是:
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,324,34,456,56,567,65,34,435)
(s<-summary (as.factor(numbers)))
这将数据集转换为因子,然后summary()为我们提供控制总数(唯一值的计数)。
输出是:
4 5 23 34 43 54 56 65 67 324 435 453 456 567 657
2 1 2 2 1 1 2 1 2 1 3 1 1 1 1
如果愿意,可以将其存储为数据帧。
as.data.frame(cbind(Number = names(s),Freq = s), stringsAsFactors=F, row.names = 1:length(s))
这里row.names用于重命名行名。 在不使用row.names的情况下,s中的列名被用作new dataframe中的行名
输出是:
Number Freq
1 4 2
2 5 1
3 23 2
4 34 2
5 43 1
6 54 1
7 56 2
8 65 1
9 67 2
10 324 1
11 435 3
12 453 1
13 456 1
14 567 1
15 657 1
使用表,但不与名称比较:
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435)
x <- 67
numbertable <- table(numbers)
numbertable[as.character(x)]
#67
# 2
当您多次使用不同元素的计数时,Table非常有用。如果你只需要一个计数,使用sum(numbers == x)
如果你想计算随后出现的次数,你可以使用sapply函数:
index<-sapply(1:length(numbers),function(x)sum(numbers[1:x]==numbers[x]))
cbind(numbers, index)
输出:
numbers index
[1,] 4 1
[2,] 23 1
[3,] 4 2
[4,] 23 2
[5,] 5 1
[6,] 43 1
[7,] 54 1
[8,] 56 1
[9,] 657 1
[10,] 67 1
[11,] 67 2
[12,] 435 1
[13,] 453 1
[14,] 435 2
[15,] 324 1
[16,] 34 1
[17,] 456 1
[18,] 56 2
[19,] 567 1
[20,] 65 1
[21,] 34 2
[22,] 435 3
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435 453,435,324,34,456,56,567,65,34,435)
> length(grep(435, numbers))
[1] 3
> length(which(435 == numbers))
[1] 3
> require(plyr)
> df = count(numbers)
> df[df$x == 435, ]
x freq
11 435 3
> sum(435 == numbers)
[1] 3
> sum(grepl(435, numbers))
[1] 3
> sum(435 == numbers)
[1] 3
> tabulate(numbers)[435]
[1] 3
> table(numbers)['435']
435
3
> length(subset(numbers, numbers=='435'))
[1] 3
计算特定元素有不同的方法
library(plyr)
numbers =c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,7,65,34,435)
print(length(which(numbers==435)))
#Sum counts number of TRUE's in a vector
print(sum(numbers==435))
print(sum(c(TRUE, FALSE, TRUE)))
#count is present in plyr library
#o/p of count is a DataFrame, freq is 1 of the columns of data frame
print(count(numbers[numbers==435]))
print(count(numbers[numbers==435])[['freq']])
这可以用outer来完成,以获得一个等式矩阵,后面跟着rowsum,具有明显的含义。 为了将计数和数字放在同一个数据集中,首先创建data.frame。如果需要分离输入和输出,则不需要此步骤。
df <- data.frame(No = numbers)
df$count <- rowSums(outer(df$No, df$No, FUN = `==`))
一种相对快速处理长向量并提供方便输出的方法是使用长度(split(numbers, numbers))(注意长度后面的S):
# Make some integer vectors of different sizes
set.seed(123)
x <- sample.int(1e3, 1e4, replace = TRUE)
xl <- sample.int(1e3, 1e6, replace = TRUE)
xxl <-sample.int(1e3, 1e7, replace = TRUE)
# Number of times each value appears in x:
a <- lengths(split(x,x))
# Number of times the value 64 appears:
a["64"]
#~ 64
#~ 15
# Occurences of the first 10 values
a[1:10]
#~ 1 2 3 4 5 6 7 8 9 10
#~ 13 12 6 14 12 5 13 14 11 14
输出只是一个命名向量。 速度似乎可以与JBecker提出的rle相媲美,甚至在非常长的向量上更快。下面是R 3.6.2中的一个微基准测试,其中包含了一些提议的功能:
library(microbenchmark)
f1 <- function(vec) lengths(split(vec,vec))
f2 <- function(vec) table(vec)
f3 <- function(vec) rle(sort(vec))
f4 <- function(vec) plyr::count(vec)
microbenchmark(split = f1(x),
table = f2(x),
rle = f3(x),
plyr = f4(x))
#~ Unit: microseconds
#~ expr min lq mean median uq max neval cld
#~ split 402.024 423.2445 492.3400 446.7695 484.3560 2970.107 100 b
#~ table 1234.888 1290.0150 1378.8902 1333.2445 1382.2005 3203.332 100 d
#~ rle 227.685 238.3845 264.2269 245.7935 279.5435 378.514 100 a
#~ plyr 758.866 793.0020 866.9325 843.2290 894.5620 2346.407 100 c
microbenchmark(split = f1(xl),
table = f2(xl),
rle = f3(xl),
plyr = f4(xl))
#~ Unit: milliseconds
#~ expr min lq mean median uq max neval cld
#~ split 21.96075 22.42355 26.39247 23.24847 24.60674 82.88853 100 ab
#~ table 100.30543 104.05397 111.62963 105.54308 110.28732 168.27695 100 c
#~ rle 19.07365 20.64686 23.71367 21.30467 23.22815 78.67523 100 a
#~ plyr 24.33968 25.21049 29.71205 26.50363 27.75960 92.02273 100 b
microbenchmark(split = f1(xxl),
table = f2(xxl),
rle = f3(xxl),
plyr = f4(xxl))
#~ Unit: milliseconds
#~ expr min lq mean median uq max neval cld
#~ split 296.4496 310.9702 342.6766 332.5098 374.6485 421.1348 100 a
#~ table 1151.4551 1239.9688 1283.8998 1288.0994 1323.1833 1385.3040 100 d
#~ rle 399.9442 430.8396 464.2605 471.4376 483.2439 555.9278 100 c
#~ plyr 350.0607 373.1603 414.3596 425.1436 437.8395 506.0169 100 b
重要的是,唯一计算缺失值NA数量的函数是plyr::count。这些也可以使用sum(is.na(vec))单独获得。
这是一维原子向量的快速解。它依赖于match(),所以它与NA兼容:
x <- c("a", NA, "a", "c", "a", "b", NA, "c")
fn <- function(x) {
u <- unique.default(x)
out <- list(x = u, freq = .Internal(tabulate(match(x, u), length(u))))
class(out) <- "data.frame"
attr(out, "row.names") <- seq_along(u)
out
}
fn(x)
#> x freq
#> 1 a 3
#> 2 <NA> 2
#> 3 c 2
#> 4 b 1
您还可以调整算法,使其不运行unique()。
fn2 <- function(x) {
y <- match(x, x)
out <- list(x = x, freq = .Internal(tabulate(y, length(x)))[y])
class(out) <- "data.frame"
attr(out, "row.names") <- seq_along(x)
out
}
fn2(x)
#> x freq
#> 1 a 3
#> 2 <NA> 2
#> 3 a 3
#> 4 c 2
#> 5 a 3
#> 6 b 1
#> 7 <NA> 2
#> 8 c 2
在需要该输出的情况下,您甚至可能不需要它来重新返回原始向量,而第二列可能就是您所需要的全部。你可以用pipe在一行中得到:
match(x, x) %>% `[`(tabulate(.), .)
#> [1] 3 2 3 2 3 1 2 2
一个选项是使用vctrs库中的vec_count()函数:
vec_count(numbers)
key count
1 435 3
2 67 2
3 4 2
4 34 2
5 56 2
6 23 2
7 456 1
8 43 1
9 453 1
10 5 1
11 657 1
12 324 1
13 54 1
14 567 1
15 65 1
默认顺序将最常用的值放在顶部。如果根据键进行排序(类似table()的输出):
vec_count(numbers, sort = "key")
key count
1 4 2
2 5 1
3 23 2
4 34 2
5 43 1
6 54 1
7 56 2
8 65 1
9 67 2
10 324 1
11 435 3
12 453 1
13 456 1
14 567 1
15 657 1
下面是一种可以用dplyr实现的方法:
library(tidyverse)
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
453,435,324,34,456,56,567,65,34,435)
ord <- seq(1:(length(numbers)))
df <- data.frame(ord,numbers)
df <- df %>%
count(numbers)
numbers n
<dbl> <int>
1 4 2
2 5 1
3 23 2
4 34 2
5 43 1
6 54 1
7 56 2
8 65 1
9 67 2
10 324 1
11 435 3
12 453 1
13 456 1
14 567 1
15 657 1
你可以创建一个函数来得到结果。
# your list
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
453,435,324,34,456,56,567,65,34,435)
function1<-function(x){
if(x==value){return(1)}else{ return(0) }
}
# set your value here
value<-4
# make a vector which return 1 if it equal to your value, 0 else
vector<-sapply(numbers,function(x) function1(x))
sum(vector)
结果:2
2021年的基本解决方案
aggregate(numbers, list(num=numbers), length)
num x
1 4 2
2 5 1
3 23 2
4 34 2
5 43 1
6 54 1
7 56 2
8 65 1
9 67 2
10 324 1
11 435 3
12 453 1
13 456 1
14 567 1
15 657 1
tapply(numbers, numbers, length)
4 5 23 34 43 54 56 65 67 324 435 453 456 567 657
2 1 2 2 1 1 2 1 2 1 3 1 1 1 1
by(numbers, list(num=numbers), length)
num: 4
[1] 2
--------------------------------------
num: 5
[1] 1
--------------------------------------
num: 23
[1] 2
--------------------------------------
num: 34
[1] 2
--------------------------------------
num: 43
[1] 1
--------------------------------------
num: 54
[1] 1
--------------------------------------
num: 56
[1] 2
--------------------------------------
num: 65
[1] 1
--------------------------------------
num: 67
[1] 2
--------------------------------------
num: 324
[1] 1
--------------------------------------
num: 435
[1] 3
--------------------------------------
num: 453
[1] 1
--------------------------------------
num: 456
[1] 1
--------------------------------------
num: 567
[1] 1
--------------------------------------
num: 657
[1] 1