我有一个数字向量:

numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
         453,435,324,34,456,56,567,65,34,435)

我如何让R计算x值在向量中出现的次数?


当前回答

这可以用outer来完成,以获得一个等式矩阵,后面跟着rowsum,具有明显的含义。 为了将计数和数字放在同一个数据集中,首先创建data.frame。如果需要分离输入和输出,则不需要此步骤。

df <- data.frame(No = numbers)
df$count <- rowSums(outer(df$No, df$No, FUN = `==`))

其他回答

最直接的方法是求和(numbers == x)。

numbers == x创建一个在x出现的每个位置都为TRUE的逻辑向量,当求和时,逻辑向量被强制转换为numeric,将TRUE转换为1,FALSE转换为0。

但是,请注意,对于浮点数,最好使用如下格式:sum(abs(numbers - x) < 1e-6)。

计算特定元素有不同的方法

library(plyr)
numbers =c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,7,65,34,435)

print(length(which(numbers==435)))

#Sum counts number of TRUE's in a vector 
print(sum(numbers==435))
print(sum(c(TRUE, FALSE, TRUE)))

#count is present in plyr library 
#o/p of count is a DataFrame, freq is 1 of the columns of data frame
print(count(numbers[numbers==435]))
print(count(numbers[numbers==435])[['freq']])

一个选项是使用vctrs库中的vec_count()函数:

vec_count(numbers)

   key count
1  435     3
2   67     2
3    4     2
4   34     2
5   56     2
6   23     2
7  456     1
8   43     1
9  453     1
10   5     1
11 657     1
12 324     1
13  54     1
14 567     1
15  65     1

默认顺序将最常用的值放在顶部。如果根据键进行排序(类似table()的输出):

vec_count(numbers, sort = "key")

   key count
1    4     2
2    5     1
3   23     2
4   34     2
5   43     1
6   54     1
7   56     2
8   65     1
9   67     2
10 324     1
11 435     3
12 453     1
13 456     1
14 567     1
15 657     1

我可能会这样做

length(which(numbers==x))

但实际上,更好的方法是

table(numbers)

一种相对快速处理长向量并提供方便输出的方法是使用长度(split(numbers, numbers))(注意长度后面的S):

# Make some integer vectors of different sizes
set.seed(123)
x <- sample.int(1e3, 1e4, replace = TRUE)
xl <- sample.int(1e3, 1e6, replace = TRUE)
xxl <-sample.int(1e3, 1e7, replace = TRUE)

# Number of times each value appears in x:
a <- lengths(split(x,x))

# Number of times the value 64 appears:
a["64"]
#~ 64
#~ 15

# Occurences of the first 10 values
a[1:10]
#~ 1  2  3  4  5  6  7  8  9 10 
#~ 13 12  6 14 12  5 13 14 11 14 

输出只是一个命名向量。 速度似乎可以与JBecker提出的rle相媲美,甚至在非常长的向量上更快。下面是R 3.6.2中的一个微基准测试,其中包含了一些提议的功能:

library(microbenchmark)

f1 <- function(vec) lengths(split(vec,vec))
f2 <- function(vec) table(vec)
f3 <- function(vec) rle(sort(vec))
f4 <- function(vec) plyr::count(vec)

microbenchmark(split = f1(x),
               table = f2(x),
               rle = f3(x),
               plyr = f4(x))
#~ Unit: microseconds
#~   expr      min        lq      mean    median        uq      max neval  cld
#~  split  402.024  423.2445  492.3400  446.7695  484.3560 2970.107   100  b  
#~  table 1234.888 1290.0150 1378.8902 1333.2445 1382.2005 3203.332   100    d
#~    rle  227.685  238.3845  264.2269  245.7935  279.5435  378.514   100 a   
#~   plyr  758.866  793.0020  866.9325  843.2290  894.5620 2346.407   100   c 

microbenchmark(split = f1(xl),
               table = f2(xl),
               rle = f3(xl),
               plyr = f4(xl))
#~ Unit: milliseconds
#~   expr       min        lq      mean    median        uq       max neval cld
#~  split  21.96075  22.42355  26.39247  23.24847  24.60674  82.88853   100 ab 
#~  table 100.30543 104.05397 111.62963 105.54308 110.28732 168.27695   100   c
#~    rle  19.07365  20.64686  23.71367  21.30467  23.22815  78.67523   100 a  
#~   plyr  24.33968  25.21049  29.71205  26.50363  27.75960  92.02273   100  b 

microbenchmark(split = f1(xxl),
               table = f2(xxl),
               rle = f3(xxl),
               plyr = f4(xxl))
#~ Unit: milliseconds
#~   expr       min        lq      mean    median        uq       max neval  cld
#~  split  296.4496  310.9702  342.6766  332.5098  374.6485  421.1348   100 a   
#~  table 1151.4551 1239.9688 1283.8998 1288.0994 1323.1833 1385.3040   100    d
#~    rle  399.9442  430.8396  464.2605  471.4376  483.2439  555.9278   100   c 
#~   plyr  350.0607  373.1603  414.3596  425.1436  437.8395  506.0169   100  b  

重要的是,唯一计算缺失值NA数量的函数是plyr::count。这些也可以使用sum(is.na(vec))单独获得。