我有一个数字向量:
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
453,435,324,34,456,56,567,65,34,435)
我如何让R计算x值在向量中出现的次数?
我有一个数字向量:
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
453,435,324,34,456,56,567,65,34,435)
我如何让R计算x值在向量中出现的次数?
当前回答
在R中有一个标准函数
汇总(数字)
其他回答
如果你想计算随后出现的次数,你可以使用sapply函数:
index<-sapply(1:length(numbers),function(x)sum(numbers[1:x]==numbers[x]))
cbind(numbers, index)
输出:
numbers index
[1,] 4 1
[2,] 23 1
[3,] 4 2
[4,] 23 2
[5,] 5 1
[6,] 43 1
[7,] 54 1
[8,] 56 1
[9,] 657 1
[10,] 67 1
[11,] 67 2
[12,] 435 1
[13,] 453 1
[14,] 435 2
[15,] 324 1
[16,] 34 1
[17,] 456 1
[18,] 56 2
[19,] 567 1
[20,] 65 1
[21,] 34 2
[22,] 435 3
我可能会这样做
length(which(numbers==x))
但实际上,更好的方法是
table(numbers)
这是一维原子向量的快速解。它依赖于match(),所以它与NA兼容:
x <- c("a", NA, "a", "c", "a", "b", NA, "c")
fn <- function(x) {
u <- unique.default(x)
out <- list(x = u, freq = .Internal(tabulate(match(x, u), length(u))))
class(out) <- "data.frame"
attr(out, "row.names") <- seq_along(u)
out
}
fn(x)
#> x freq
#> 1 a 3
#> 2 <NA> 2
#> 3 c 2
#> 4 b 1
您还可以调整算法,使其不运行unique()。
fn2 <- function(x) {
y <- match(x, x)
out <- list(x = x, freq = .Internal(tabulate(y, length(x)))[y])
class(out) <- "data.frame"
attr(out, "row.names") <- seq_along(x)
out
}
fn2(x)
#> x freq
#> 1 a 3
#> 2 <NA> 2
#> 3 a 3
#> 4 c 2
#> 5 a 3
#> 6 b 1
#> 7 <NA> 2
#> 8 c 2
在需要该输出的情况下,您甚至可能不需要它来重新返回原始向量,而第二列可能就是您所需要的全部。你可以用pipe在一行中得到:
match(x, x) %>% `[`(tabulate(.), .)
#> [1] 3 2 3 2 3 1 2 2
计算特定元素有不同的方法
library(plyr)
numbers =c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,7,65,34,435)
print(length(which(numbers==435)))
#Sum counts number of TRUE's in a vector
print(sum(numbers==435))
print(sum(c(TRUE, FALSE, TRUE)))
#count is present in plyr library
#o/p of count is a DataFrame, freq is 1 of the columns of data frame
print(count(numbers[numbers==435]))
print(count(numbers[numbers==435])[['freq']])
一个选项是使用vctrs库中的vec_count()函数:
vec_count(numbers)
key count
1 435 3
2 67 2
3 4 2
4 34 2
5 56 2
6 23 2
7 456 1
8 43 1
9 453 1
10 5 1
11 657 1
12 324 1
13 54 1
14 567 1
15 65 1
默认顺序将最常用的值放在顶部。如果根据键进行排序(类似table()的输出):
vec_count(numbers, sort = "key")
key count
1 4 2
2 5 1
3 23 2
4 34 2
5 43 1
6 54 1
7 56 2
8 65 1
9 67 2
10 324 1
11 435 3
12 453 1
13 456 1
14 567 1
15 657 1