我有一个数字向量:

numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
         453,435,324,34,456,56,567,65,34,435)

我如何让R计算x值在向量中出现的次数?


当前回答

2021年的基本解决方案

aggregate(numbers, list(num=numbers), length)

       num x
1        4 2
2        5 1
3       23 2
4       34 2
5       43 1
6       54 1
7       56 2
8       65 1
9       67 2
10     324 1
11     435 3
12     453 1
13     456 1
14     567 1
15     657 1

tapply(numbers, numbers, length)
  4   5  23  34  43  54  56  65  67 324 435 453 456 567 657 
  2   1   2   2   1   1   2   1   2   1   3   1   1   1   1 

by(numbers, list(num=numbers), length)
num: 4
[1] 2
-------------------------------------- 
num: 5
[1] 1
-------------------------------------- 
num: 23
[1] 2
-------------------------------------- 
num: 34
[1] 2
-------------------------------------- 
num: 43
[1] 1
-------------------------------------- 
num: 54
[1] 1
-------------------------------------- 
num: 56
[1] 2
-------------------------------------- 
num: 65
[1] 1
-------------------------------------- 
num: 67
[1] 2
-------------------------------------- 
num: 324
[1] 1
-------------------------------------- 
num: 435
[1] 3
-------------------------------------- 
num: 453
[1] 1
-------------------------------------- 
num: 456
[1] 1
-------------------------------------- 
num: 567
[1] 1
-------------------------------------- 
num: 657
[1] 1

其他回答

我的首选解决方案使用rle,它将返回一个值(在您的示例中是标签x)和一个长度,它表示该值按顺序出现了多少次。

通过结合rle和sort,可以非常快速地计算任何值出现的次数。这对解决更复杂的问题很有帮助。

例子:

> numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,324,34,456,56,567,65,34,435)
> a <- rle(sort(numbers))
> a
  Run Length Encoding
    lengths: int [1:15] 2 1 2 2 1 1 2 1 2 1 ...
    values : num [1:15] 4 5 23 34 43 54 56 65 67 324 ...

如果你想要的值没有显示,或者你需要为以后存储该值,创建一个data.frame。

> b <- data.frame(number=a$values, n=a$lengths)
> b
    values n
 1       4 2
 2       5 1
 3      23 2
 4      34 2
 5      43 1
 6      54 1
 7      56 2
 8      65 1
 9      67 2
 10    324 1
 11    435 3
 12    453 1
 13    456 1
 14    567 1
 15    657 1

我发现我很少想知道一个值的频率,而不是所有值的频率,rle似乎是获得计数和存储所有值的最快方法。

另外一个我觉得方便的方法是:

numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,324,34,456,56,567,65,34,435)
(s<-summary (as.factor(numbers)))

这将数据集转换为因子,然后summary()为我们提供控制总数(唯一值的计数)。

输出是:

4   5  23  34  43  54  56  65  67 324 435 453 456 567 657 
2   1   2   2   1   1   2   1   2   1   3   1   1   1   1 

如果愿意,可以将其存储为数据帧。

as.data.frame(cbind(Number = names(s),Freq = s), stringsAsFactors=F, row.names = 1:length(s))

这里row.names用于重命名行名。 在不使用row.names的情况下,s中的列名被用作new dataframe中的行名

输出是:

     Number Freq
1       4    2
2       5    1
3      23    2
4      34    2
5      43    1
6      54    1
7      56    2
8      65    1
9      67    2
10    324    1
11    435    3
12    453    1
13    456    1
14    567    1
15    657    1
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435 453,435,324,34,456,56,567,65,34,435)

> length(grep(435, numbers))
[1] 3


> length(which(435 == numbers))
[1] 3


> require(plyr)
> df = count(numbers)
> df[df$x == 435, ] 
     x freq
11 435    3


> sum(435 == numbers)
[1] 3


> sum(grepl(435, numbers))
[1] 3


> sum(435 == numbers)
[1] 3


> tabulate(numbers)[435]
[1] 3


> table(numbers)['435']
435 
  3 


> length(subset(numbers, numbers=='435')) 
[1] 3

一个选项是使用vctrs库中的vec_count()函数:

vec_count(numbers)

   key count
1  435     3
2   67     2
3    4     2
4   34     2
5   56     2
6   23     2
7  456     1
8   43     1
9  453     1
10   5     1
11 657     1
12 324     1
13  54     1
14 567     1
15  65     1

默认顺序将最常用的值放在顶部。如果根据键进行排序(类似table()的输出):

vec_count(numbers, sort = "key")

   key count
1    4     2
2    5     1
3   23     2
4   34     2
5   43     1
6   54     1
7   56     2
8   65     1
9   67     2
10 324     1
11 435     3
12 453     1
13 456     1
14 567     1
15 657     1

你可以创建一个函数来得到结果。

# your list
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
         453,435,324,34,456,56,567,65,34,435)

function1<-function(x){
    if(x==value){return(1)}else{ return(0) }
}

# set your value here
value<-4

# make a vector which return 1 if it equal to your value, 0 else
vector<-sapply(numbers,function(x) function1(x))
sum(vector)

结果:2