我有一个数字向量:
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
453,435,324,34,456,56,567,65,34,435)
我如何让R计算x值在向量中出现的次数?
我有一个数字向量:
numbers <- c(4,23,4,23,5,43,54,56,657,67,67,435,
453,435,324,34,456,56,567,65,34,435)
我如何让R计算x值在向量中出现的次数?
当前回答
2021年的基本解决方案
aggregate(numbers, list(num=numbers), length)
num x
1 4 2
2 5 1
3 23 2
4 34 2
5 43 1
6 54 1
7 56 2
8 65 1
9 67 2
10 324 1
11 435 3
12 453 1
13 456 1
14 567 1
15 657 1
tapply(numbers, numbers, length)
4 5 23 34 43 54 56 65 67 324 435 453 456 567 657
2 1 2 2 1 1 2 1 2 1 3 1 1 1 1
by(numbers, list(num=numbers), length)
num: 4
[1] 2
--------------------------------------
num: 5
[1] 1
--------------------------------------
num: 23
[1] 2
--------------------------------------
num: 34
[1] 2
--------------------------------------
num: 43
[1] 1
--------------------------------------
num: 54
[1] 1
--------------------------------------
num: 56
[1] 2
--------------------------------------
num: 65
[1] 1
--------------------------------------
num: 67
[1] 2
--------------------------------------
num: 324
[1] 1
--------------------------------------
num: 435
[1] 3
--------------------------------------
num: 453
[1] 1
--------------------------------------
num: 456
[1] 1
--------------------------------------
num: 567
[1] 1
--------------------------------------
num: 657
[1] 1
其他回答
一种相对快速处理长向量并提供方便输出的方法是使用长度(split(numbers, numbers))(注意长度后面的S):
# Make some integer vectors of different sizes
set.seed(123)
x <- sample.int(1e3, 1e4, replace = TRUE)
xl <- sample.int(1e3, 1e6, replace = TRUE)
xxl <-sample.int(1e3, 1e7, replace = TRUE)
# Number of times each value appears in x:
a <- lengths(split(x,x))
# Number of times the value 64 appears:
a["64"]
#~ 64
#~ 15
# Occurences of the first 10 values
a[1:10]
#~ 1 2 3 4 5 6 7 8 9 10
#~ 13 12 6 14 12 5 13 14 11 14
输出只是一个命名向量。 速度似乎可以与JBecker提出的rle相媲美,甚至在非常长的向量上更快。下面是R 3.6.2中的一个微基准测试,其中包含了一些提议的功能:
library(microbenchmark)
f1 <- function(vec) lengths(split(vec,vec))
f2 <- function(vec) table(vec)
f3 <- function(vec) rle(sort(vec))
f4 <- function(vec) plyr::count(vec)
microbenchmark(split = f1(x),
table = f2(x),
rle = f3(x),
plyr = f4(x))
#~ Unit: microseconds
#~ expr min lq mean median uq max neval cld
#~ split 402.024 423.2445 492.3400 446.7695 484.3560 2970.107 100 b
#~ table 1234.888 1290.0150 1378.8902 1333.2445 1382.2005 3203.332 100 d
#~ rle 227.685 238.3845 264.2269 245.7935 279.5435 378.514 100 a
#~ plyr 758.866 793.0020 866.9325 843.2290 894.5620 2346.407 100 c
microbenchmark(split = f1(xl),
table = f2(xl),
rle = f3(xl),
plyr = f4(xl))
#~ Unit: milliseconds
#~ expr min lq mean median uq max neval cld
#~ split 21.96075 22.42355 26.39247 23.24847 24.60674 82.88853 100 ab
#~ table 100.30543 104.05397 111.62963 105.54308 110.28732 168.27695 100 c
#~ rle 19.07365 20.64686 23.71367 21.30467 23.22815 78.67523 100 a
#~ plyr 24.33968 25.21049 29.71205 26.50363 27.75960 92.02273 100 b
microbenchmark(split = f1(xxl),
table = f2(xxl),
rle = f3(xxl),
plyr = f4(xxl))
#~ Unit: milliseconds
#~ expr min lq mean median uq max neval cld
#~ split 296.4496 310.9702 342.6766 332.5098 374.6485 421.1348 100 a
#~ table 1151.4551 1239.9688 1283.8998 1288.0994 1323.1833 1385.3040 100 d
#~ rle 399.9442 430.8396 464.2605 471.4376 483.2439 555.9278 100 c
#~ plyr 350.0607 373.1603 414.3596 425.1436 437.8395 506.0169 100 b
重要的是,唯一计算缺失值NA数量的函数是plyr::count。这些也可以使用sum(is.na(vec))单独获得。
最直接的方法是求和(numbers == x)。
numbers == x创建一个在x出现的每个位置都为TRUE的逻辑向量,当求和时,逻辑向量被强制转换为numeric,将TRUE转换为1,FALSE转换为0。
但是,请注意,对于浮点数,最好使用如下格式:sum(abs(numbers - x) < 1e-6)。
计算特定元素有不同的方法
library(plyr)
numbers =c(4,23,4,23,5,43,54,56,657,67,67,435,453,435,7,65,34,435)
print(length(which(numbers==435)))
#Sum counts number of TRUE's in a vector
print(sum(numbers==435))
print(sum(c(TRUE, FALSE, TRUE)))
#count is present in plyr library
#o/p of count is a DataFrame, freq is 1 of the columns of data frame
print(count(numbers[numbers==435]))
print(count(numbers[numbers==435])[['freq']])
也有计数(数字)从plyr包。在我看来,比餐桌方便多了。
2021年的基本解决方案
aggregate(numbers, list(num=numbers), length)
num x
1 4 2
2 5 1
3 23 2
4 34 2
5 43 1
6 54 1
7 56 2
8 65 1
9 67 2
10 324 1
11 435 3
12 453 1
13 456 1
14 567 1
15 657 1
tapply(numbers, numbers, length)
4 5 23 34 43 54 56 65 67 324 435 453 456 567 657
2 1 2 2 1 1 2 1 2 1 3 1 1 1 1
by(numbers, list(num=numbers), length)
num: 4
[1] 2
--------------------------------------
num: 5
[1] 1
--------------------------------------
num: 23
[1] 2
--------------------------------------
num: 34
[1] 2
--------------------------------------
num: 43
[1] 1
--------------------------------------
num: 54
[1] 1
--------------------------------------
num: 56
[1] 2
--------------------------------------
num: 65
[1] 1
--------------------------------------
num: 67
[1] 2
--------------------------------------
num: 324
[1] 1
--------------------------------------
num: 435
[1] 3
--------------------------------------
num: 453
[1] 1
--------------------------------------
num: 456
[1] 1
--------------------------------------
num: 567
[1] 1
--------------------------------------
num: 657
[1] 1