找到Python列表中最常见元素的有效方法是什么?
我的列表项可能不是可哈希的,所以不能使用字典。 同样,在抽取的情况下,应返回索引最低的项。例子:
>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'
找到Python列表中最常见元素的有效方法是什么?
我的列表项可能不是可哈希的,所以不能使用字典。 同样,在抽取的情况下,应返回索引最低的项。例子:
>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'
如果它们是不可哈希的,您可以对它们进行排序,并对结果进行一次循环,以计数项(相同的项将彼此相邻)。但是使它们可哈希并使用字典可能更快。
def most_common(lst):
cur_length = 0
max_length = 0
cur_i = 0
max_i = 0
cur_item = None
max_item = None
for i, item in sorted(enumerate(lst), key=lambda x: x[1]):
if cur_item is None or cur_item != item:
if cur_length > max_length or (cur_length == max_length and cur_i < max_i):
max_length = cur_length
max_i = cur_i
max_item = cur_item
cur_length = 1
cur_i = i
cur_item = item
else:
cur_length += 1
if cur_length > max_length or (cur_length == max_length and cur_i < max_i):
return cur_item
return max_item
如果排序和哈希都不可行,这是一个明显的缓慢的解决方案(O(n²)),但相等比较(==)可用:
def most_common(items):
if not items:
raise ValueError
fitems = []
best_idx = 0
for item in items:
item_missing = True
i = 0
for fitem in fitems:
if fitem[0] == item:
fitem[1] += 1
d = fitem[1] - fitems[best_idx][1]
if d > 0 or (d == 0 and fitems[best_idx][2] > fitem[2]):
best_idx = i
item_missing = False
break
i += 1
if item_missing:
fitems.append([item, 1, i])
return items[best_idx]
但是,如果你的列表(n)的长度很大,那么让你的项目可哈希或可排序(正如其他答案所建议的那样)几乎总是能更快地找到最常见的元素。哈希时平均为O(n),排序时最差为O(n*log(n))。
在这里:
def most_common(l):
max = 0
maxitem = None
for x in set(l):
count = l.count(x)
if count > max:
max = count
maxitem = x
return maxitem
我有一种模糊的感觉,在标准库的某个地方有一个方法可以给你每个元素的计数,但我找不到它。
>>> li = ['goose', 'duck', 'duck']
>>> def foo(li):
st = set(li)
mx = -1
for each in st:
temp = li.count(each):
if mx < temp:
mx = temp
h = each
return h
>>> foo(li)
'duck'
一行程序:
def most_common (lst):
return max(((item, lst.count(item)) for item in set(lst)), key=lambda a: a[1])[0]
# use Decorate, Sort, Undecorate to solve the problem
def most_common(iterable):
# Make a list with tuples: (item, index)
# The index will be used later to break ties for most common item.
lst = [(x, i) for i, x in enumerate(iterable)]
lst.sort()
# lst_final will also be a list of tuples: (count, index, item)
# Sorting on this list will find us the most common item, and the index
# will break ties so the one listed first wins. Count is negative so
# largest count will have lowest value and sort first.
lst_final = []
# Get an iterator for our new list...
itr = iter(lst)
# ...and pop the first tuple off. Setup current state vars for loop.
count = 1
tup = next(itr)
x_cur, i_cur = tup
# Loop over sorted list of tuples, counting occurrences of item.
for tup in itr:
# Same item again?
if x_cur == tup[0]:
# Yes, same item; increment count
count += 1
else:
# No, new item, so write previous current item to lst_final...
t = (-count, i_cur, x_cur)
lst_final.append(t)
# ...and reset current state vars for loop.
x_cur, i_cur = tup
count = 1
# Write final item after loop ends
t = (-count, i_cur, x_cur)
lst_final.append(t)
lst_final.sort()
answer = lst_final[0][2]
return answer
print most_common(['x', 'e', 'a', 'e', 'a', 'e', 'e']) # prints 'e'
print most_common(['goose', 'duck', 'duck', 'goose']) # prints 'goose'
这是O(n)解。
mydict = {}
cnt, itm = 0, ''
for item in reversed(lst):
mydict[item] = mydict.get(item, 0) + 1
if mydict[item] >= cnt :
cnt, itm = mydict[item], item
print itm
(reversed用于确保它返回最低的索引项)
提出了这么多解决方案,我很惊讶没有人提出我认为明显的解决方案(对于不可哈希但可比较的元素)——[itertools.groupby][1]。Itertools提供了快速、可重用的功能,并允许您将一些棘手的逻辑委托给经过良好测试的标准库组件。举个例子:
import itertools
import operator
def most_common(L):
# get an iterable of (item, iterable) pairs
SL = sorted((x, i) for i, x in enumerate(L))
# print 'SL:', SL
groups = itertools.groupby(SL, key=operator.itemgetter(0))
# auxiliary function to get "quality" for an item
def _auxfun(g):
item, iterable = g
count = 0
min_index = len(L)
for _, where in iterable:
count += 1
min_index = min(min_index, where)
# print 'item %r, count %r, minind %r' % (item, count, min_index)
return count, -min_index
# pick the highest-count/earliest item
return max(groups, key=_auxfun)[0]
当然,这可以写得更简洁,但我的目标是尽可能清晰。这两个print语句可以取消注释,以便更好地查看运行中的机制;例如,不加注释的打印:
print most_common(['goose', 'duck', 'duck', 'goose'])
发出:
SL: [('duck', 1), ('duck', 2), ('goose', 0), ('goose', 3)]
item 'duck', count 2, minind 1
item 'goose', count 2, minind 0
goose
如您所见,SL是一个对的列表,每对都是一个项目,后面是该项目在原始列表中的索引(为了实现关键条件,如果具有相同最高计数的“最常见”项目是> 1,则结果必须是最早出现的项目)。
Groupby只根据项目分组(通过operator.itemgetter)。辅助函数在max计算期间每分组调用一次,接收并在内部解包一个组——一个包含两个项目(item, iterable)的元组,其中iterable的项目也是两个项目元组,(item,原始索引)[[SL的项目]]。
然后辅助函数使用循环来确定组的可迭代对象中条目的计数和最小原始索引;它将返回这些组合的“质量键”,并更改了最小索引符号,以便Max操作将考虑原始列表中较早出现的那些项。
如果在时间和空间上少考虑一些大o问题,这段代码就会简单得多,例如....:
def most_common(L):
groups = itertools.groupby(sorted(L))
def _auxfun((item, iterable)):
return len(list(iterable)), -L.index(item)
return max(groups, key=_auxfun)[0]
同样的基本思想,只是表达得更简单简洁……但是,唉,额外的O(N)辅助空间(将组的可迭代对象包含到列表中)和O(N平方)时间(获得每个项目的L.index)。虽然过早的优化是编程中的万恶之源,但当O(N log N)方法可用时,却故意选择O(N²)方法,这太违背可伸缩性了!-)
最后,对于那些更喜欢“单行程序”而不是清晰和性能的人来说,一个额外的单行程序版本,它的名字被适当地扭曲了:-)。
from itertools import groupby as g
def most_common_oneliner(L):
return max(g(sorted(L)), key=lambda(x, v):(len(list(v)),-L.index(x)))[0]
你可能不再需要这个了,但这是我对一个类似问题所做的。(因为评论,它看起来比实际要长。)
itemList = ['hi', 'hi', 'hello', 'bye']
counter = {}
maxItemCount = 0
for item in itemList:
try:
# Referencing this will cause a KeyError exception
# if it doesn't already exist
counter[item]
# ... meaning if we get this far it didn't happen so
# we'll increment
counter[item] += 1
except KeyError:
# If we got a KeyError we need to create the
# dictionary key
counter[item] = 1
# Keep overwriting maxItemCount with the latest number,
# if it's higher than the existing itemCount
if counter[item] > maxItemCount:
maxItemCount = counter[item]
mostPopularItem = item
print mostPopularItem
从这里借鉴,这可以在Python 2.7中使用:
from collections import Counter
def Most_Common(lst):
data = Counter(lst)
return data.most_common(1)[0][0]
比Alex的解决方案快4-6倍,比newacct提出的一行程序快50倍。
在CPython 3.6+(任何Python 3.7+)上,上面将选择第一个看到的元素。如果你在旧的Python上运行,为了检索列表中第一个出现的元素,你需要进行两次传递来保持顺序:
# Only needed pre-3.6!
def most_common(lst):
data = Counter(lst)
return max(lst, key=data.get)
你想要的在统计中被称为模式,Python当然有一个内置函数来为你做这件事:
>>> from statistics import mode
>>> mode([1, 2, 2, 3, 3, 3, 3, 3, 4, 5, 6, 6, 6])
3
请注意,如果没有“最常见元素”,例如前两个元素并列的情况,这将在Python上引发StatisticsError <=3.7,从3.8开始,它将返回遇到的第一个。
def popular(L):
C={}
for a in L:
C[a]=L.count(a)
for b in C.keys():
if C[b]==max(C.values()):
return b
L=[2,3,5,3,6,3,6,3,6,3,7,467,4,7,4]
print popular(L)
def most_common(lst):
if max([lst.count(i)for i in lst]) == 1:
return False
else:
return max(set(lst), key=lst.count)
我在最近的一个项目中需要这样做。我承认,我无法理解Alex的回答,所以这就是我最后得到的答案。
def mostPopular(l):
mpEl=None
mpIndex=0
mpCount=0
curEl=None
curCount=0
for i, el in sorted(enumerate(l), key=lambda x: (x[1], x[0]), reverse=True):
curCount=curCount+1 if el==curEl else 1
curEl=el
if curCount>mpCount \
or (curCount==mpCount and i<mpIndex):
mpEl=curEl
mpIndex=i
mpCount=curCount
return mpEl, mpCount, mpIndex
我根据Alex的解决方案计时,对于短列表,它要快10-15%,但一旦超过100个或更多元素(测试多达20万个),它就会慢20%。
这是一个很简单的解,时间复杂度是线性的
L =['鹅','鸭','鸭']
def most_common (L):
current_winner = 0
max_repeated = None
for i in L:
amount_times = L.count(i)
if amount_times > current_winner:
current_winner = amount_times
max_repeated = i
return max_repeated
打印(most_common (L)
“鸭子”
number是列表中重复次数最多的元素吗
以Luiz的回答为基础,但满足“在抽取索引最低的项目时应返回”的条件:
from statistics import mode, StatisticsError
def most_common(l):
try:
return mode(l)
except StatisticsError as e:
# will only return the first element if no unique mode found
if 'no unique mode' in e.args[0]:
return l[0]
# this is for "StatisticsError: no mode for empty data"
# after calling mode([])
raise
例子:
>>> most_common(['a', 'b', 'b'])
'b'
>>> most_common([1, 2])
1
>>> most_common([])
StatisticsError: no mode for empty data
def mostCommonElement(list):
count = {} // dict holder
max = 0 // keep track of the count by key
result = None // holder when count is greater than max
for i in list:
if i not in count:
count[i] = 1
else:
count[i] += 1
if count[i] > max:
max = count[i]
result = i
return result
主要组合(“a”、“b”、“a”、“c”)->“a”
如果没有最低索引的要求,您可以使用集合。计数器:
from collections import Counter
a = [1936, 2401, 2916, 4761, 9216, 9216, 9604, 9801]
c = Counter(a)
print(c.most_common(1)) # the one most common element... 2 would mean the 2 most common
[(9216, 2)] # a set containing the element, and it's count in 'a'
我这样做使用scipy统计模块和lambda:
import scipy.stats
lst = [1,2,3,4,5,6,7,5]
most_freq_val = lambda x: scipy.stats.mode(x)[0][0]
print(most_freq_val(lst))
结果:
most_freq_val = 5
ans = [1, 1, 0, 0, 1, 1]
all_ans = {ans.count(ans[i]): ans[i] for i in range(len(ans))}
print(all_ans)
all_ans={4: 1, 2: 0}
max_key = max(all_ans.keys())
4
print(all_ans[max_key])
1
最常见的元素应该是在数组中出现超过N/2次的元素,其中N是len(数组)。下面的技术将以O(n)个时间复杂度完成,只消耗O(1)个辅助空间。
from collections import Counter
def majorityElement(arr):
majority_elem = Counter(arr)
size = len(arr)
for key, val in majority_elem.items():
if val > size/2:
return key
return -1
#This will return the list sorted by frequency:
def orderByFrequency(list):
listUniqueValues = np.unique(list)
listQty = []
listOrderedByFrequency = []
for i in range(len(listUniqueValues)):
listQty.append(list.count(listUniqueValues[i]))
for i in range(len(listQty)):
index_bigger = np.argmax(listQty)
for j in range(listQty[index_bigger]):
listOrderedByFrequency.append(listUniqueValues[index_bigger])
listQty[index_bigger] = -1
return listOrderedByFrequency
#And this will return a list with the most frequent values in a list:
def getMostFrequentValues(list):
if (len(list) <= 1):
return list
list_most_frequent = []
list_ordered_by_frequency = orderByFrequency(list)
list_most_frequent.append(list_ordered_by_frequency[0])
frequency = list_ordered_by_frequency.count(list_ordered_by_frequency[0])
index = 0
while(index < len(list_ordered_by_frequency)):
index = index + frequency
if(index < len(list_ordered_by_frequency)):
testValue = list_ordered_by_frequency[index]
testValueFrequency = list_ordered_by_frequency.count(testValue)
if (testValueFrequency == frequency):
list_most_frequent.append(testValue)
else:
break
return list_most_frequent
#tests:
print(getMostFrequentValues([]))
print(getMostFrequentValues([1]))
print(getMostFrequentValues([1,1]))
print(getMostFrequentValues([2,1]))
print(getMostFrequentValues([2,2,1]))
print(getMostFrequentValues([1,2,1,2]))
print(getMostFrequentValues([1,2,1,2,2]))
print(getMostFrequentValues([3,2,3,5,6,3,2,2]))
print(getMostFrequentValues([1,2,2,60,50,3,3,50,3,4,50,4,4,60,60]))
Results:
[]
[1]
[1]
[1, 2]
[2]
[1, 2]
[2]
[2, 3]
[3, 4, 50, 60]
def most_frequent(List):
counter = 0
num = List[0]
for i in List:
curr_frequency = List.count(i)
if(curr_frequency> counter):
counter = curr_frequency
num = i
return num
List = [2, 1, 2, 2, 1, 3]
print(most_frequent(List))
numbers = [1, 3, 7, 4, 3, 0, 3, 6, 3]
max_repeat_num = max(numbers, key=numbers.count) *# which number most* frequently
max_repeat = numbers.count(max_repeat_num) *#how many times*
print(f" the number {max_repeat_num} is repeated{max_repeat} times")