找到Python列表中最常见元素的有效方法是什么?

我的列表项可能不是可哈希的,所以不能使用字典。 同样,在抽取的情况下,应返回索引最低的项。例子:

>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'

当前回答

 def most_common(lst):
    if max([lst.count(i)for i in lst]) == 1:
        return False
    else:
        return max(set(lst), key=lst.count)

其他回答

def popular(L):
C={}
for a in L:
    C[a]=L.count(a)
for b in C.keys():
    if C[b]==max(C.values()):
        return b
L=[2,3,5,3,6,3,6,3,6,3,7,467,4,7,4]
print popular(L)
numbers = [1, 3, 7, 4, 3, 0, 3, 6, 3]
max_repeat_num = max(numbers, key=numbers.count)     *# which number most* frequently
max_repeat = numbers.count(max_repeat_num)           *#how many times*
print(f" the number {max_repeat_num} is repeated{max_repeat} times")

简单的一行代码:

def most_common(lst):
    return max(set(lst), key=lst.count)

你想要的在统计中被称为模式,Python当然有一个内置函数来为你做这件事:

>>> from statistics import mode
>>> mode([1, 2, 2, 3, 3, 3, 3, 3, 4, 5, 6, 6, 6])
3

请注意,如果没有“最常见元素”,例如前两个元素并列的情况,这将在Python上引发StatisticsError <=3.7,从3.8开始,它将返回遇到的第一个。

最常见的元素应该是在数组中出现超过N/2次的元素,其中N是len(数组)。下面的技术将以O(n)个时间复杂度完成,只消耗O(1)个辅助空间。

from collections import Counter

def majorityElement(arr):        
    majority_elem = Counter(arr)
    size = len(arr)
    for key, val in majority_elem.items():
        if val > size/2:
            return key
    return -1