找到Python列表中最常见元素的有效方法是什么?

我的列表项可能不是可哈希的,所以不能使用字典。 同样,在抽取的情况下,应返回索引最低的项。例子:

>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'

当前回答

#This will return the list sorted by frequency:

def orderByFrequency(list):

    listUniqueValues = np.unique(list)
    listQty = []
    listOrderedByFrequency = []
    
    for i in range(len(listUniqueValues)):
        listQty.append(list.count(listUniqueValues[i]))
    for i in range(len(listQty)):
        index_bigger = np.argmax(listQty)
        for j in range(listQty[index_bigger]):
            listOrderedByFrequency.append(listUniqueValues[index_bigger])
        listQty[index_bigger] = -1
    return listOrderedByFrequency

#And this will return a list with the most frequent values in a list:

def getMostFrequentValues(list):
    
    if (len(list) <= 1):
        return list
    
    list_most_frequent = []
    list_ordered_by_frequency = orderByFrequency(list)
    
    list_most_frequent.append(list_ordered_by_frequency[0])
    frequency = list_ordered_by_frequency.count(list_ordered_by_frequency[0])
    
    index = 0
    while(index < len(list_ordered_by_frequency)):
        index = index + frequency
        
        if(index < len(list_ordered_by_frequency)):
            testValue = list_ordered_by_frequency[index]
            testValueFrequency = list_ordered_by_frequency.count(testValue)
            
            if (testValueFrequency == frequency):
                list_most_frequent.append(testValue)
            else:
                break    
    
    return list_most_frequent

#tests:
print(getMostFrequentValues([]))
print(getMostFrequentValues([1]))
print(getMostFrequentValues([1,1]))
print(getMostFrequentValues([2,1]))
print(getMostFrequentValues([2,2,1]))
print(getMostFrequentValues([1,2,1,2]))
print(getMostFrequentValues([1,2,1,2,2]))
print(getMostFrequentValues([3,2,3,5,6,3,2,2]))
print(getMostFrequentValues([1,2,2,60,50,3,3,50,3,4,50,4,4,60,60]))

Results:
[]
[1]
[1]
[1, 2]
[2]
[1, 2]
[2]
[2, 3]
[3, 4, 50, 60]

其他回答

简单的一行解决方案

moc= max([(lst.count(chr),chr) for chr in set(lst)])

它会返回频率最高的元素。

如果排序和哈希都不可行,这是一个明显的缓慢的解决方案(O(n²)),但相等比较(==)可用:

def most_common(items):
  if not items:
    raise ValueError
  fitems = [] 
  best_idx = 0
  for item in items:   
    item_missing = True
    i = 0
    for fitem in fitems:  
      if fitem[0] == item:
        fitem[1] += 1
        d = fitem[1] - fitems[best_idx][1]
        if d > 0 or (d == 0 and fitems[best_idx][2] > fitem[2]):
          best_idx = i
        item_missing = False
        break
      i += 1
    if item_missing:
      fitems.append([item, 1, i])
  return items[best_idx]

但是,如果你的列表(n)的长度很大,那么让你的项目可哈希或可排序(正如其他答案所建议的那样)几乎总是能更快地找到最常见的元素。哈希时平均为O(n),排序时最差为O(n*log(n))。

简单的一行代码:

def most_common(lst):
    return max(set(lst), key=lst.count)

这是O(n)解。

mydict   = {}
cnt, itm = 0, ''
for item in reversed(lst):
     mydict[item] = mydict.get(item, 0) + 1
     if mydict[item] >= cnt :
         cnt, itm = mydict[item], item

print itm

(reversed用于确保它返回最低的索引项)

你想要的在统计中被称为模式,Python当然有一个内置函数来为你做这件事:

>>> from statistics import mode
>>> mode([1, 2, 2, 3, 3, 3, 3, 3, 4, 5, 6, 6, 6])
3

请注意,如果没有“最常见元素”,例如前两个元素并列的情况,这将在Python上引发StatisticsError <=3.7,从3.8开始,它将返回遇到的第一个。