找到Python列表中最常见元素的有效方法是什么?

我的列表项可能不是可哈希的,所以不能使用字典。 同样,在抽取的情况下,应返回索引最低的项。例子:

>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'

当前回答

简单的一行代码:

def most_common(lst):
    return max(set(lst), key=lst.count)

其他回答

numbers = [1, 3, 7, 4, 3, 0, 3, 6, 3]
max_repeat_num = max(numbers, key=numbers.count)     *# which number most* frequently
max_repeat = numbers.count(max_repeat_num)           *#how many times*
print(f" the number {max_repeat_num} is repeated{max_repeat} times")

你可能不再需要这个了,但这是我对一个类似问题所做的。(因为评论,它看起来比实际要长。)

itemList = ['hi', 'hi', 'hello', 'bye']

counter = {}
maxItemCount = 0
for item in itemList:
    try:
        # Referencing this will cause a KeyError exception
        # if it doesn't already exist
        counter[item]
        # ... meaning if we get this far it didn't happen so
        # we'll increment
        counter[item] += 1
    except KeyError:
        # If we got a KeyError we need to create the
        # dictionary key
        counter[item] = 1

    # Keep overwriting maxItemCount with the latest number,
    # if it's higher than the existing itemCount
    if counter[item] > maxItemCount:
        maxItemCount = counter[item]
        mostPopularItem = item

print mostPopularItem

简单的一行解决方案

moc= max([(lst.count(chr),chr) for chr in set(lst)])

它会返回频率最高的元素。

最常见的元素应该是在数组中出现超过N/2次的元素,其中N是len(数组)。下面的技术将以O(n)个时间复杂度完成,只消耗O(1)个辅助空间。

from collections import Counter

def majorityElement(arr):        
    majority_elem = Counter(arr)
    size = len(arr)
    for key, val in majority_elem.items():
        if val > size/2:
            return key
    return -1

如果它们是不可哈希的,您可以对它们进行排序,并对结果进行一次循环,以计数项(相同的项将彼此相邻)。但是使它们可哈希并使用字典可能更快。

def most_common(lst):
    cur_length = 0
    max_length = 0
    cur_i = 0
    max_i = 0
    cur_item = None
    max_item = None
    for i, item in sorted(enumerate(lst), key=lambda x: x[1]):
        if cur_item is None or cur_item != item:
            if cur_length > max_length or (cur_length == max_length and cur_i < max_i):
                max_length = cur_length
                max_i = cur_i
                max_item = cur_item
            cur_length = 1
            cur_i = i
            cur_item = item
        else:
            cur_length += 1
    if cur_length > max_length or (cur_length == max_length and cur_i < max_i):
        return cur_item
    return max_item