找到Python列表中最常见元素的有效方法是什么?
我的列表项可能不是可哈希的,所以不能使用字典。 同样,在抽取的情况下,应返回索引最低的项。例子:
>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'
找到Python列表中最常见元素的有效方法是什么?
我的列表项可能不是可哈希的,所以不能使用字典。 同样,在抽取的情况下,应返回索引最低的项。例子:
>>> most_common(['duck', 'duck', 'goose'])
'duck'
>>> most_common(['goose', 'duck', 'duck', 'goose'])
'goose'
当前回答
以Luiz的回答为基础,但满足“在抽取索引最低的项目时应返回”的条件:
from statistics import mode, StatisticsError
def most_common(l):
try:
return mode(l)
except StatisticsError as e:
# will only return the first element if no unique mode found
if 'no unique mode' in e.args[0]:
return l[0]
# this is for "StatisticsError: no mode for empty data"
# after calling mode([])
raise
例子:
>>> most_common(['a', 'b', 'b'])
'b'
>>> most_common([1, 2])
1
>>> most_common([])
StatisticsError: no mode for empty data
其他回答
def popular(L):
C={}
for a in L:
C[a]=L.count(a)
for b in C.keys():
if C[b]==max(C.values()):
return b
L=[2,3,5,3,6,3,6,3,6,3,7,467,4,7,4]
print popular(L)
如果它们是不可哈希的,您可以对它们进行排序,并对结果进行一次循环,以计数项(相同的项将彼此相邻)。但是使它们可哈希并使用字典可能更快。
def most_common(lst):
cur_length = 0
max_length = 0
cur_i = 0
max_i = 0
cur_item = None
max_item = None
for i, item in sorted(enumerate(lst), key=lambda x: x[1]):
if cur_item is None or cur_item != item:
if cur_length > max_length or (cur_length == max_length and cur_i < max_i):
max_length = cur_length
max_i = cur_i
max_item = cur_item
cur_length = 1
cur_i = i
cur_item = item
else:
cur_length += 1
if cur_length > max_length or (cur_length == max_length and cur_i < max_i):
return cur_item
return max_item
从这里借鉴,这可以在Python 2.7中使用:
from collections import Counter
def Most_Common(lst):
data = Counter(lst)
return data.most_common(1)[0][0]
比Alex的解决方案快4-6倍,比newacct提出的一行程序快50倍。
在CPython 3.6+(任何Python 3.7+)上,上面将选择第一个看到的元素。如果你在旧的Python上运行,为了检索列表中第一个出现的元素,你需要进行两次传递来保持顺序:
# Only needed pre-3.6!
def most_common(lst):
data = Counter(lst)
return max(lst, key=data.get)
ans = [1, 1, 0, 0, 1, 1]
all_ans = {ans.count(ans[i]): ans[i] for i in range(len(ans))}
print(all_ans)
all_ans={4: 1, 2: 0}
max_key = max(all_ans.keys())
4
print(all_ans[max_key])
1
我这样做使用scipy统计模块和lambda:
import scipy.stats
lst = [1,2,3,4,5,6,7,5]
most_freq_val = lambda x: scipy.stats.mode(x)[0][0]
print(most_freq_val(lst))
结果:
most_freq_val = 5