我正在寻找最快的方法来获得π的值,作为一个个人挑战。更具体地说,我使用的方法不涉及使用#define常量M_PI,或硬编码的数字。

下面的程序测试了我所知道的各种方法。从理论上讲,内联汇编版本是最快的选择,尽管显然不能移植。我将它作为一个基准,与其他版本进行比较。在我的测试中,使用内置函数,4 * atan(1)版本在GCC 4.2上是最快的,因为它自动将atan(1)折叠成一个常量。通过指定-fno-builtin, atan2(0, -1)版本是最快的。

下面是主要的测试程序(pitimes.c):

#include <math.h>
#include <stdio.h>
#include <time.h>

#define ITERS 10000000
#define TESTWITH(x) {                                                       \
    diff = 0.0;                                                             \
    time1 = clock();                                                        \
    for (i = 0; i < ITERS; ++i)                                             \
        diff += (x) - M_PI;                                                 \
    time2 = clock();                                                        \
    printf("%s\t=> %e, time => %f\n", #x, diff, diffclock(time2, time1));   \
}

static inline double
diffclock(clock_t time1, clock_t time0)
{
    return (double) (time1 - time0) / CLOCKS_PER_SEC;
}

int
main()
{
    int i;
    clock_t time1, time2;
    double diff;

    /* Warmup. The atan2 case catches GCC's atan folding (which would
     * optimise the ``4 * atan(1) - M_PI'' to a no-op), if -fno-builtin
     * is not used. */
    TESTWITH(4 * atan(1))
    TESTWITH(4 * atan2(1, 1))

#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__))
    extern double fldpi();
    TESTWITH(fldpi())
#endif

    /* Actual tests start here. */
    TESTWITH(atan2(0, -1))
    TESTWITH(acos(-1))
    TESTWITH(2 * asin(1))
    TESTWITH(4 * atan2(1, 1))
    TESTWITH(4 * atan(1))

    return 0;
}

内联汇编的东西(fldpi.c)只适用于x86和x64系统:

double
fldpi()
{
    double pi;
    asm("fldpi" : "=t" (pi));
    return pi;
}

和一个构建脚本,构建我正在测试的所有配置(build.sh):

#!/bin/sh
gcc -O3 -Wall -c           -m32 -o fldpi-32.o fldpi.c
gcc -O3 -Wall -c           -m64 -o fldpi-64.o fldpi.c

gcc -O3 -Wall -ffast-math  -m32 -o pitimes1-32 pitimes.c fldpi-32.o
gcc -O3 -Wall              -m32 -o pitimes2-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -fno-builtin -m32 -o pitimes3-32 pitimes.c fldpi-32.o -lm
gcc -O3 -Wall -ffast-math  -m64 -o pitimes1-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall              -m64 -o pitimes2-64 pitimes.c fldpi-64.o -lm
gcc -O3 -Wall -fno-builtin -m64 -o pitimes3-64 pitimes.c fldpi-64.o -lm

除了在各种编译器标志之间进行测试(我也比较了32位和64位,因为优化是不同的),我还尝试切换测试的顺序。但是,atan2(0, -1)版本在每次测试中仍然名列前茅。


当前回答

更好的方法

要获得标准常数(如pi)或标准概念的输出,我们应该首先使用所使用语言中可用的内置方法。它将以最快和最好的方式返回一个值。我正在使用python以最快的方式运行,以获得圆周率的值。

数学库的PI变量。数学库将变量pi存储为常数。

math_pi.py

import math
print math.pi

使用linux /usr/bin/time -v python math_pi.py的time工具运行脚本

输出:

Command being timed: "python math_pi.py"
User time (seconds): 0.01
System time (seconds): 0.01
Percent of CPU this job got: 91%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.03

用arccos的数学方法

acos_pi.py

import math
print math.acos(-1)

使用linux /usr/bin/time -v python acos_pi.py的time工具运行脚本

输出:

Command being timed: "python acos_pi.py"
User time (seconds): 0.02
System time (seconds): 0.01
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.03

使用BBP公式

bbp_pi.py

from decimal import Decimal, getcontext
getcontext().prec=100
print sum(1/Decimal(16)**k * 
          (Decimal(4)/(8*k+1) - 
           Decimal(2)/(8*k+4) - 
           Decimal(1)/(8*k+5) -
           Decimal(1)/(8*k+6)) for k in range(100))

使用linux /usr/bin/time -v python bbp_pi.py的time工具运行脚本

输出:

Command being timed: "python c.py"
User time (seconds): 0.05
System time (seconds): 0.01
Percent of CPU this job got: 98%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.06

因此,最好的方法是使用语言提供的内置方法,因为它们是获得输出的最快和最好的方法。在python中使用math.pi

其他回答

蒙特卡罗方法,如前所述,应用了一些伟大的概念,但很明显,它不是最快的,不是从任何合理的标准来看。此外,这完全取决于你想要什么样的准确性。我所知道的最快的π是数字硬编码的π。看看圆周率和圆周率,有很多公式。

Here is a method that converges quickly — about 14 digits per iteration. PiFast, the current fastest application, uses this formula with the FFT. I'll just write the formula, since the code is straightforward. This formula was almost found by Ramanujan and discovered by Chudnovsky. It is actually how he calculated several billion digits of the number — so it isn't a method to disregard. The formula will overflow quickly and, since we are dividing factorials, it would be advantageous then to delay such calculations to remove terms.

在那里,

下面是Brent-Salamin算法。维基百科提到,当a和b“足够接近”时,(a + b)²/ 4t将是π的近似值。我不确定“足够接近”是什么意思,但从我的测试来看,一次迭代得到2位数字,两次得到7位,3次得到15位,当然这是双精度,所以它可能会有一个基于它的表示的错误,真实的计算可能会更准确。

let pi_2 iters =
    let rec loop_ a b t p i =
        if i = 0 then a,b,t,p
        else
            let a_n = (a +. b) /. 2.0 
            and b_n = sqrt (a*.b)
            and p_n = 2.0 *. p in
            let t_n = t -. (p *. (a -. a_n) *. (a -. a_n)) in
            loop_ a_n b_n t_n p_n (i - 1)
    in 
    let a,b,t,p = loop_ (1.0) (1.0 /. (sqrt 2.0)) (1.0/.4.0) (1.0) iters in
    (a +. b) *. (a +. b) /. (4.0 *. t)

最后,来点圆周率高尔夫(800位数字)怎么样?160个字符!

int a=10000,b,c=2800,d,e,f[2801],g;main(){for(;b-c;)f[b++]=a/5;for(;d=0,g=c*2;c-=14,printf("%.4d",e+d/a),e=d%a)for(b=c;d+=f[b]*a,f[b]=d%--g,d/=g--,--b;d*=b);}

更好的方法

要获得标准常数(如pi)或标准概念的输出,我们应该首先使用所使用语言中可用的内置方法。它将以最快和最好的方式返回一个值。我正在使用python以最快的方式运行,以获得圆周率的值。

数学库的PI变量。数学库将变量pi存储为常数。

math_pi.py

import math
print math.pi

使用linux /usr/bin/time -v python math_pi.py的time工具运行脚本

输出:

Command being timed: "python math_pi.py"
User time (seconds): 0.01
System time (seconds): 0.01
Percent of CPU this job got: 91%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.03

用arccos的数学方法

acos_pi.py

import math
print math.acos(-1)

使用linux /usr/bin/time -v python acos_pi.py的time工具运行脚本

输出:

Command being timed: "python acos_pi.py"
User time (seconds): 0.02
System time (seconds): 0.01
Percent of CPU this job got: 94%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.03

使用BBP公式

bbp_pi.py

from decimal import Decimal, getcontext
getcontext().prec=100
print sum(1/Decimal(16)**k * 
          (Decimal(4)/(8*k+1) - 
           Decimal(2)/(8*k+4) - 
           Decimal(1)/(8*k+5) -
           Decimal(1)/(8*k+6)) for k in range(100))

使用linux /usr/bin/time -v python bbp_pi.py的time工具运行脚本

输出:

Command being timed: "python c.py"
User time (seconds): 0.05
System time (seconds): 0.01
Percent of CPU this job got: 98%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:00.06

因此,最好的方法是使用语言提供的内置方法,因为它们是获得输出的最快和最好的方法。在python中使用math.pi

在编译时用D计算PI。

(摘自DSource.org)

/** Calculate pi at compile time
 *
 * Compile with dmd -c pi.d
 */
module calcpi;

import meta.math;
import meta.conv;

/** real evaluateSeries!(real x, real metafunction!(real y, int n) term)
 *
 * Evaluate a power series at compile time.
 *
 * Given a metafunction of the form
 *  real term!(real y, int n),
 * which gives the nth term of a convergent series at the point y
 * (where the first term is n==1), and a real number x,
 * this metafunction calculates the infinite sum at the point x
 * by adding terms until the sum doesn't change any more.
 */
template evaluateSeries(real x, alias term, int n=1, real sumsofar=0.0)
{
  static if (n>1 && sumsofar == sumsofar + term!(x, n+1)) {
     const real evaluateSeries = sumsofar;
  } else {
     const real evaluateSeries = evaluateSeries!(x, term, n+1, sumsofar + term!(x, n));
  }
}

/*** Calculate atan(x) at compile time.
 *
 * Uses the Maclaurin formula
 *  atan(z) = z - z^3/3 + Z^5/5 - Z^7/7 + ...
 */
template atan(real z)
{
    const real atan = evaluateSeries!(z, atanTerm);
}

template atanTerm(real x, int n)
{
    const real atanTerm =  (n & 1 ? 1 : -1) * pow!(x, 2*n-1)/(2*n-1);
}

/// Machin's formula for pi
/// pi/4 = 4 atan(1/5) - atan(1/239).
pragma(msg, "PI = " ~ fcvt!(4.0 * (4*atan!(1/5.0) - atan!(1/239.0))) );

下面的内容精确地回答了如何以尽可能快的方式——以最少的计算工作量——完成这一任务。即使你不喜欢这个答案,你也不得不承认,这确实是求圆周率值最快的方法。

求圆周率的最快方法是:

选择你最喜欢的编程语言 加载它的数学库 发现圆周率已经在那里定义了——可以使用了!

以防你手边没有数学图书馆。

第二快的方法(更普遍的解决方案)是:

在互联网上查找圆周率,例如这里:

http://www.eveandersson.com/pi/digits/1000000(100万位数..你的浮点精度是多少?)

或者在这里:

http://3.141592653589793238462643383279502884197169399375105820974944592.com/

或者在这里:

http://en.wikipedia.org/wiki/Pi

它可以非常快速地找到您想要使用的任何精度算术所需要的数字,并且通过定义一个常量,您可以确保不会浪费宝贵的CPU时间。

这不仅是一个有点幽默的回答,而且在现实中,如果有人愿意在实际应用中计算圆周率的值。这将是对CPU时间的巨大浪费,不是吗?至少我没有看到重新计算这个的实际应用。

还要考虑到NASA只使用15位圆周率来计算星际旅行:

TL;博士:https://twitter.com/Rainmaker1973/status/1463477499434835968 喷气推进实验室解释:https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/

亲爱的主持人:请注意,OP问:“最快的方法来获得PI的值”

BBP公式允许你计算第n位数字-以2为基数(或16)-甚至不需要麻烦之前的n-1位:)