当我启用c++ 11时,我在一个小的c++代码片段中发现了一个有趣的性能回归:

#include <vector>

struct Item
{
  int a;
  int b;
};

int main()
{
  const std::size_t num_items = 10000000;
  std::vector<Item> container;
  container.reserve(num_items);
  for (std::size_t i = 0; i < num_items; ++i) {
    container.push_back(Item());
  }
  return 0;
}

使用g++ (GCC) 4.8.2 20131219(预发布)和c++ 03我得到:

milian:/tmp$ g++ -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        35.206824 task-clock                #    0.988 CPUs utilized            ( +-  1.23% )
                4 context-switches          #    0.116 K/sec                    ( +-  4.38% )
                0 cpu-migrations            #    0.006 K/sec                    ( +- 66.67% )
              849 page-faults               #    0.024 M/sec                    ( +-  6.02% )
       95,693,808 cycles                    #    2.718 GHz                      ( +-  1.14% ) [49.72%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
       95,282,359 instructions              #    1.00  insns per cycle          ( +-  0.65% ) [75.27%]
       30,104,021 branches                  #  855.062 M/sec                    ( +-  0.87% ) [77.46%]
            6,038 branch-misses             #    0.02% of all branches          ( +- 25.73% ) [75.53%]

      0.035648729 seconds time elapsed                                          ( +-  1.22% )

另一方面,当c++ 11启用时,性能会显著下降:

milian:/tmp$ g++ -std=c++11 -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        86.485313 task-clock                #    0.994 CPUs utilized            ( +-  0.50% )
                9 context-switches          #    0.104 K/sec                    ( +-  1.66% )
                2 cpu-migrations            #    0.017 K/sec                    ( +- 26.76% )
              798 page-faults               #    0.009 M/sec                    ( +-  8.54% )
      237,982,690 cycles                    #    2.752 GHz                      ( +-  0.41% ) [51.32%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
      135,730,319 instructions              #    0.57  insns per cycle          ( +-  0.32% ) [75.77%]
       30,880,156 branches                  #  357.057 M/sec                    ( +-  0.25% ) [75.76%]
            4,188 branch-misses             #    0.01% of all branches          ( +-  7.59% ) [74.08%]

    0.087016724 seconds time elapsed                                          ( +-  0.50% )

有人能解释一下吗?到目前为止,我的经验是,通过启用c++ 11, STL变得更快,特别是由于移动语义。

编辑:按照建议,使用container.emplace_back();相反,性能与c++ 03版本相当。c++ 03版本如何为push_back实现同样的功能?

milian:/tmp$ g++ -std=c++11 -O3 main.cpp && perf stat -r 10 ./a.out

Performance counter stats for './a.out' (10 runs):

        36.229348 task-clock                #    0.988 CPUs utilized            ( +-  0.81% )
                4 context-switches          #    0.116 K/sec                    ( +-  3.17% )
                1 cpu-migrations            #    0.017 K/sec                    ( +- 36.85% )
              798 page-faults               #    0.022 M/sec                    ( +-  8.54% )
       94,488,818 cycles                    #    2.608 GHz                      ( +-  1.11% ) [50.44%]
  <not supported> stalled-cycles-frontend 
  <not supported> stalled-cycles-backend  
       94,851,411 instructions              #    1.00  insns per cycle          ( +-  0.98% ) [75.22%]
       30,468,562 branches                  #  840.991 M/sec                    ( +-  1.07% ) [76.71%]
            2,723 branch-misses             #    0.01% of all branches          ( +-  9.84% ) [74.81%]

   0.036678068 seconds time elapsed                                          ( +-  0.80% )

我可以用你在帖子里写的选项在我的机器上重现你的结果。

然而,如果我也启用链接时间优化(我也将-flto标志传递给gcc 4.7.2),结果是相同的:

(我正在编译你的原始代码,使用container.push_back(Item());)

$ g++ -std=c++11 -O3 -flto regr.cpp && perf stat -r 10 ./a.out 

 Performance counter stats for './a.out' (10 runs):

         35.426793 task-clock                #    0.986 CPUs utilized            ( +-  1.75% )
                 4 context-switches          #    0.116 K/sec                    ( +-  5.69% )
                 0 CPU-migrations            #    0.006 K/sec                    ( +- 66.67% )
            19,801 page-faults               #    0.559 M/sec                  
        99,028,466 cycles                    #    2.795 GHz                      ( +-  1.89% ) [77.53%]
        50,721,061 stalled-cycles-frontend   #   51.22% frontend cycles idle     ( +-  3.74% ) [79.47%]
        25,585,331 stalled-cycles-backend    #   25.84% backend  cycles idle     ( +-  4.90% ) [73.07%]
       141,947,224 instructions              #    1.43  insns per cycle        
                                             #    0.36  stalled cycles per insn  ( +-  0.52% ) [88.72%]
        37,697,368 branches                  # 1064.092 M/sec                    ( +-  0.52% ) [88.75%]
            26,700 branch-misses             #    0.07% of all branches          ( +-  3.91% ) [83.64%]

       0.035943226 seconds time elapsed                                          ( +-  1.79% )



$ g++ -std=c++98 -O3 -flto regr.cpp && perf stat -r 10 ./a.out 

 Performance counter stats for './a.out' (10 runs):

         35.510495 task-clock                #    0.988 CPUs utilized            ( +-  2.54% )
                 4 context-switches          #    0.101 K/sec                    ( +-  7.41% )
                 0 CPU-migrations            #    0.003 K/sec                    ( +-100.00% )
            19,801 page-faults               #    0.558 M/sec                    ( +-  0.00% )
        98,463,570 cycles                    #    2.773 GHz                      ( +-  1.09% ) [77.71%]
        50,079,978 stalled-cycles-frontend   #   50.86% frontend cycles idle     ( +-  2.20% ) [79.41%]
        26,270,699 stalled-cycles-backend    #   26.68% backend  cycles idle     ( +-  8.91% ) [74.43%]
       141,427,211 instructions              #    1.44  insns per cycle        
                                             #    0.35  stalled cycles per insn  ( +-  0.23% ) [87.66%]
        37,366,375 branches                  # 1052.263 M/sec                    ( +-  0.48% ) [88.61%]
            26,621 branch-misses             #    0.07% of all branches          ( +-  5.28% ) [83.26%]

       0.035953916 seconds time elapsed  

至于原因,需要查看生成的程序集代码(g++ -std=c++11 -O3 -S regr.cpp)。在c++ 11模式下,生成的代码明显比c++ 98模式和内联函数更加混乱 空白std::向量<项目,std::分配器<项目> >::_M_emplace_back_aux > <项目(项) 在c++ 11模式下,默认的inline-limit会失败。

这个失败的内联具有多米诺骨牌效应。不是因为这个函数被调用了 (它甚至没有被调用!)而是因为我们必须做好准备:如果它被调用, 函数参数(Item。a和b)项必须已经在正确的位置。这就导致 一个相当混乱的代码。

下面是内联成功的情况下生成的代码的相关部分:

.L42:
    testq   %rbx, %rbx  # container$D13376$_M_impl$_M_finish
    je  .L3 #,
    movl    $0, (%rbx)  #, container$D13376$_M_impl$_M_finish_136->a
    movl    $0, 4(%rbx) #, container$D13376$_M_impl$_M_finish_136->b
.L3:
    addq    $8, %rbx    #, container$D13376$_M_impl$_M_finish
    subq    $1, %rbp    #, ivtmp.106
    je  .L41    #,
.L14:
    cmpq    %rbx, %rdx  # container$D13376$_M_impl$_M_finish, container$D13376$_M_impl$_M_end_of_storage
    jne .L42    #,

这是一个漂亮而紧凑的for循环。现在,让我们将其与失败的内联情况进行比较:

.L49:
    testq   %rax, %rax  # D.15772
    je  .L26    #,
    movq    16(%rsp), %rdx  # D.13379, D.13379
    movq    %rdx, (%rax)    # D.13379, *D.15772_60
.L26:
    addq    $8, %rax    #, tmp75
    subq    $1, %rbx    #, ivtmp.117
    movq    %rax, 40(%rsp)  # tmp75, container.D.13376._M_impl._M_finish
    je  .L48    #,
.L28:
    movq    40(%rsp), %rax  # container.D.13376._M_impl._M_finish, D.15772
    cmpq    48(%rsp), %rax  # container.D.13376._M_impl._M_end_of_storage, D.15772
    movl    $0, 16(%rsp)    #, D.13379.a
    movl    $0, 20(%rsp)    #, D.13379.b
    jne .L49    #,
    leaq    16(%rsp), %rsi  #,
    leaq    32(%rsp), %rdi  #,
    call    _ZNSt6vectorI4ItemSaIS0_EE19_M_emplace_back_auxIIS0_EEEvDpOT_   #

这段代码很混乱,在循环中比在前一种情况中要做更多的事情。 在函数调用之前(显示的最后一行),参数必须适当放置:

leaq    16(%rsp), %rsi  #,
leaq    32(%rsp), %rdi  #,
call    _ZNSt6vectorI4ItemSaIS0_EE19_M_emplace_back_auxIIS0_EEEvDpOT_   #

即使这从未真正执行,循环也会在此之前安排事情:

movl    $0, 16(%rsp)    #, D.13379.a
movl    $0, 20(%rsp)    #, D.13379.b

这会导致代码混乱。如果由于内联成功而没有函数调用, 我们在循环中只有2条移动指令,并且没有使用%rsp(堆栈指针)。然而,如果内联失败,我们得到6个移动,我们混乱了很多%rsp。

只是为了证实我的理论(注意-finline-limit),两者都在c++ 11模式下:

 $ g++ -std=c++11 -O3 -finline-limit=105 regr.cpp && perf stat -r 10 ./a.out

 Performance counter stats for './a.out' (10 runs):

         84.739057 task-clock                #    0.993 CPUs utilized            ( +-  1.34% )
                 8 context-switches          #    0.096 K/sec                    ( +-  2.22% )
                 1 CPU-migrations            #    0.009 K/sec                    ( +- 64.01% )
            19,801 page-faults               #    0.234 M/sec                  
       266,809,312 cycles                    #    3.149 GHz                      ( +-  0.58% ) [81.20%]
       206,804,948 stalled-cycles-frontend   #   77.51% frontend cycles idle     ( +-  0.91% ) [81.25%]
       129,078,683 stalled-cycles-backend    #   48.38% backend  cycles idle     ( +-  1.37% ) [69.49%]
       183,130,306 instructions              #    0.69  insns per cycle        
                                             #    1.13  stalled cycles per insn  ( +-  0.85% ) [85.35%]
        38,759,720 branches                  #  457.401 M/sec                    ( +-  0.29% ) [85.43%]
            24,527 branch-misses             #    0.06% of all branches          ( +-  2.66% ) [83.52%]

       0.085359326 seconds time elapsed                                          ( +-  1.31% )

 $ g++ -std=c++11 -O3 -finline-limit=106 regr.cpp && perf stat -r 10 ./a.out

 Performance counter stats for './a.out' (10 runs):

         37.790325 task-clock                #    0.990 CPUs utilized            ( +-  2.06% )
                 4 context-switches          #    0.098 K/sec                    ( +-  5.77% )
                 0 CPU-migrations            #    0.011 K/sec                    ( +- 55.28% )
            19,801 page-faults               #    0.524 M/sec                  
       104,699,973 cycles                    #    2.771 GHz                      ( +-  2.04% ) [78.91%]
        58,023,151 stalled-cycles-frontend   #   55.42% frontend cycles idle     ( +-  4.03% ) [78.88%]
        30,572,036 stalled-cycles-backend    #   29.20% backend  cycles idle     ( +-  5.31% ) [71.40%]
       140,669,773 instructions              #    1.34  insns per cycle        
                                             #    0.41  stalled cycles per insn  ( +-  1.40% ) [88.14%]
        38,117,067 branches                  # 1008.646 M/sec                    ( +-  0.65% ) [89.38%]
            27,519 branch-misses             #    0.07% of all branches          ( +-  4.01% ) [86.16%]

       0.038187580 seconds time elapsed                                          ( +-  2.05% )

事实上,如果我们要求编译器稍微努力一点来内联那个函数,性能上的差异就消失了。


那么这个故事告诉我们什么呢?失败的内联会让你付出很大的代价,你应该充分利用编译器的功能:我只能推荐链接时间优化。它极大地提高了我的程序的性能(提高了2.5倍),我所需要做的就是传递-flto标志。这是一个很好的交易!;)

但是,我不建议使用inline关键字丢弃代码;让编译器决定要做什么。(无论如何,优化器都允许将内联关键字视为空白。)


问得好,+1!