我在想什么时候应该用Prim的算法,什么时候用Kruskal的算法来寻找最小生成树?它们都有简单的逻辑,同样的最坏情况,唯一的区别是实现可能涉及一些不同的数据结构。那么决定因素是什么呢?
当你有一个有很多边的图时,使用Prim算法。
对于具有V个顶点E条边的图,如果使用Fibonacci堆,Kruskal的算法可以在O(E log V)时间内运行,而Prim的算法可以在O(E + V log V)平摊时间内运行。
当你有一个非常密集的图,边比顶点多的时候,Prim的算法在极限上要快得多。Kruskal在典型情况下(稀疏图)性能更好,因为它使用更简单的数据结构。
我知道你没有要求这样做,但如果你有更多的处理单元,你应该总是考虑bornikolvka的算法,因为它可能很容易并行化——因此它比Kruskal和Jarník-Prim算法有性能优势。
Kruskal算法的一个重要应用是单链聚类。
考虑n个顶点,你就有了一个完整的图。得到这n个点组成的k个簇。在已排序边集的前n-(k-1)条边上运行Kruskal算法。你得到了具有最大间距的图的k个簇。
我在网上找到了一个很好的帖子,以非常直接的方式解释了两者的区别:http://www.thestudentroom.co.uk/showthread.php?t=232168。
Kruskal的算法将通过添加下一个最便宜的边来从最便宜的边增长一个解,前提是它不创建一个循环。
Prim的算法将通过添加下一个最便宜的顶点来从一个随机顶点增长一个解,这个顶点目前不在解中,但通过最便宜的边连接到它。
这里附上了一份关于这个主题的有趣的表格。
如果你同时实现Kruskal和Prim,以它们的最佳形式:分别使用联合查找和finbonacci堆,那么你会注意到Kruskal与Prim相比是多么容易实现。
Prim使用fibonacci堆比较困难,主要是因为您必须维护一个簿记表来记录图节点和堆节点之间的双向链接。而Union Find则恰恰相反,它的结构很简单,甚至可以直接生成mst,几乎没有额外的成本。
在kruskal算法中,我们在给定的图上有一些边和顶点,但在每条边上我们都有一些值或权重,我们可以为这些值或权重准备一个新的图,这个图必须不是循环的,也不能从任何一侧闭合 例如
graph like this
_____________
| | |
| | |
|__________| |
给任意顶点a b c d e f命名。
克鲁斯卡尔时间复杂度最坏情况是O(eloge)这是因为我们需要对边排序。 Prim时间复杂度最坏的情况是O(E log V)优先队列,甚至更好的情况是O(E+V log V)斐波那契堆。 我们应该使用Kruskal当图是稀疏的,即少量的边,如E=O(V),当边已经排序或如果我们可以在线性时间内排序。 当图是密集的,即边的数量很高时,我们应该使用Prim,如E=O(V²)。
推荐文章
- 什么时候我应该使用Kruskal而不是Prim(反之亦然)?
- 取一个集中在中心的随机数
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何使用JavaScript比较软件版本号?数量(只)
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- LL和LR解析之间的区别是什么?
- log(n!) = Θ(n·log(n))?
- C语言中位反转的高效算法(从MSB->LSB到LSB->MSB)
- 递归还是迭代?
- 两个长度不等的表之间的排列