我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

我已经编写了一个名为any2any的小型(反)序列化框架,它可以帮助在两种Python类型之间进行复杂的转换。

在您的情况下,我猜您想从字典(通过json.loads获得)转换为复杂的对象response.education;Response.name,具有嵌套结构response.education.id,等等… 这就是这个框架的用途。文档还不是很好,但是通过使用any2any.simple。MappingToObject,你应该可以很容易地做到。如果需要帮助,请询问。

其他回答

Python3.x

以我的知识,我能找到的最好的方法是。 注意,这段代码也处理set()。 这种方法是通用的,只需要类的扩展(在第二个例子中)。 请注意,我只是对文件执行此操作,但是很容易根据自己的喜好修改行为。

然而,这是一个编解码器。

再做一点工作,就可以用其他方式构造类。 我假设有一个默认构造函数来实例它,然后更新类dict。

import json
import collections


class JsonClassSerializable(json.JSONEncoder):

    REGISTERED_CLASS = {}

    def register(ctype):
        JsonClassSerializable.REGISTERED_CLASS[ctype.__name__] = ctype

    def default(self, obj):
        if isinstance(obj, collections.Set):
            return dict(_set_object=list(obj))
        if isinstance(obj, JsonClassSerializable):
            jclass = {}
            jclass["name"] = type(obj).__name__
            jclass["dict"] = obj.__dict__
            return dict(_class_object=jclass)
        else:
            return json.JSONEncoder.default(self, obj)

    def json_to_class(self, dct):
        if '_set_object' in dct:
            return set(dct['_set_object'])
        elif '_class_object' in dct:
            cclass = dct['_class_object']
            cclass_name = cclass["name"]
            if cclass_name not in self.REGISTERED_CLASS:
                raise RuntimeError(
                    "Class {} not registered in JSON Parser"
                    .format(cclass["name"])
                )
            instance = self.REGISTERED_CLASS[cclass_name]()
            instance.__dict__ = cclass["dict"]
            return instance
        return dct

    def encode_(self, file):
        with open(file, 'w') as outfile:
            json.dump(
                self.__dict__, outfile,
                cls=JsonClassSerializable,
                indent=4,
                sort_keys=True
            )

    def decode_(self, file):
        try:
            with open(file, 'r') as infile:
                self.__dict__ = json.load(
                    infile,
                    object_hook=self.json_to_class
                )
        except FileNotFoundError:
            print("Persistence load failed "
                  "'{}' do not exists".format(file)
                  )


class C(JsonClassSerializable):

    def __init__(self):
        self.mill = "s"


JsonClassSerializable.register(C)


class B(JsonClassSerializable):

    def __init__(self):
        self.a = 1230
        self.c = C()


JsonClassSerializable.register(B)


class A(JsonClassSerializable):

    def __init__(self):
        self.a = 1
        self.b = {1, 2}
        self.c = B()

JsonClassSerializable.register(A)

A().encode_("test")
b = A()
b.decode_("test")
print(b.a)
print(b.b)
print(b.c.a)

Edit

通过更多的研究,我发现了一种不需要SUPERCLASS寄存器方法调用的泛化方法,使用元类

import json
import collections

REGISTERED_CLASS = {}

class MetaSerializable(type):

    def __call__(cls, *args, **kwargs):
        if cls.__name__ not in REGISTERED_CLASS:
            REGISTERED_CLASS[cls.__name__] = cls
        return super(MetaSerializable, cls).__call__(*args, **kwargs)


class JsonClassSerializable(json.JSONEncoder, metaclass=MetaSerializable):

    def default(self, obj):
        if isinstance(obj, collections.Set):
            return dict(_set_object=list(obj))
        if isinstance(obj, JsonClassSerializable):
            jclass = {}
            jclass["name"] = type(obj).__name__
            jclass["dict"] = obj.__dict__
            return dict(_class_object=jclass)
        else:
            return json.JSONEncoder.default(self, obj)

    def json_to_class(self, dct):
        if '_set_object' in dct:
            return set(dct['_set_object'])
        elif '_class_object' in dct:
            cclass = dct['_class_object']
            cclass_name = cclass["name"]
            if cclass_name not in REGISTERED_CLASS:
                raise RuntimeError(
                    "Class {} not registered in JSON Parser"
                    .format(cclass["name"])
                )
            instance = REGISTERED_CLASS[cclass_name]()
            instance.__dict__ = cclass["dict"]
            return instance
        return dct

    def encode_(self, file):
        with open(file, 'w') as outfile:
            json.dump(
                self.__dict__, outfile,
                cls=JsonClassSerializable,
                indent=4,
                sort_keys=True
            )

    def decode_(self, file):
        try:
            with open(file, 'r') as infile:
                self.__dict__ = json.load(
                    infile,
                    object_hook=self.json_to_class
                )
        except FileNotFoundError:
            print("Persistence load failed "
                  "'{}' do not exists".format(file)
                  )


class C(JsonClassSerializable):

    def __init__(self):
        self.mill = "s"


class B(JsonClassSerializable):

    def __init__(self):
        self.a = 1230
        self.c = C()


class A(JsonClassSerializable):

    def __init__(self):
        self.a = 1
        self.b = {1, 2}
        self.c = B()


A().encode_("test")
b = A()
b.decode_("test")
print(b.a)
# 1
print(b.b)
# {1, 2}
print(b.c.a)
# 1230
print(b.c.c.mill)
# s

更新

在Python3中,你可以使用SimpleNamespace和object_hook在一行中完成:

import json
from types import SimpleNamespace

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: SimpleNamespace(**d))
print(x.name, x.hometown.name, x.hometown.id)

旧答案(Python2)

在Python2中,你可以使用namedtuple和object_hook在一行中完成(但对于嵌套对象非常慢):

import json
from collections import namedtuple

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values()))
print x.name, x.hometown.name, x.hometown.id

或者,为了便于重用:

def _json_object_hook(d): return namedtuple('X', d.keys())(*d.values())
def json2obj(data): return json.loads(data, object_hook=_json_object_hook)

x = json2obj(data)

如果希望它处理不是很好的属性名称的键,请检查namedtuple的rename参数。

JSON到python对象

下面的代码递归地使用对象键创建动态属性。

JSON对象- fb_data.json:

{
    "name": "John Smith",
    "hometown": {
        "name": "New York",
        "id": 123
    },
    "list": [
        "a",
        "b",
        "c",
        1,
        {
            "key": 1
        }
    ],
    "object": {
        "key": {
            "key": 1
        }
    }
}

在转换中我们有三种情况:

列表 Dicts(新对象) Bool, int, float和STR

import json


class AppConfiguration(object):
    def __init__(self, data=None):
        if data is None:
            with open("fb_data.json") as fh:
                data = json.loads(fh.read())
        else:
            data = dict(data)

        for key, val in data.items():
            setattr(self, key, self.compute_attr_value(val))

    def compute_attr_value(self, value):
        if isinstance(value, list):
            return [self.compute_attr_value(x) for x in value]
        elif isinstance(value, dict):
            return AppConfiguration(value)
        else:
            return value


if __name__ == "__main__":
    instance = AppConfiguration()

    print(instance.name)
    print(instance.hometown.name)
    print(instance.hometown.id)
    print(instance.list[4].key)
    print(instance.object.key.key)

键值对是属性-对象。

输出:

John Smith
New York
123
1
1

将JSON作为代码粘贴

支持TypeScript、Python、Go、Ruby、c#、Java、Swift、Rust、Kotlin、c++、Flow、Objective-C、JavaScript、Elm、JSON Schema。

从JSON、JSON Schema和TypeScript中交互式地生成类型和(反)序列化代码 将JSON/JSON Schema/TypeScript作为代码粘贴

quicktype从示例JSON数据中推断类型,然后输出强类型模型和序列化器,以便用所需的编程语言处理这些数据。

输出:

# Generated by https://quicktype.io
#
# To change quicktype's target language, run command:
#
#   "Set quicktype target language"

from typing import List, Union


class Hometown:
    name: str
    id: int

    def __init__(self, name: str, id: int) -> None:
        self.name = name
        self.id = id


class Key:
    key: int

    def __init__(self, key: int) -> None:
        self.key = key


class Object:
    key: Key

    def __init__(self, key: Key) -> None:
        self.key = key


class FbData:
    name: str
    hometown: Hometown
    list: List[Union[Key, int, str]]
    object: Object

    def __init__(self, name: str, hometown: Hometown, list: List[Union[Key, int, str]], object: Object) -> None:
        self.name = name
        self.hometown = hometown
        self.list = list
        self.object = object

这个扩展可以在Visual Studio代码市场中免费获得。

扩展一下DS的答案,如果你需要对象是可变的(而namedtuple不是),你可以使用记录类库而不是namedtuple:

import json
from recordclass import recordclass

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse into a mutable object
x = json.loads(data, object_hook=lambda d: recordclass('X', d.keys())(*d.values()))

修改后的对象可以使用simplejson很容易地转换回json:

x.name = "John Doe"
new_json = simplejson.dumps(x)

你可以使用

x = Map(json.loads(response))
x.__class__ = MyClass

在哪里

class Map(dict):
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self[k] = v
                    if isinstance(v, dict):
                        self[k] = Map(v)

        if kwargs:
            # for python 3 use kwargs.items()
            for k, v in kwargs.iteritems():
                self[k] = v
                if isinstance(v, dict):
                    self[k] = Map(v)

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

对于通用的、经得起未来考验的解决方案。