我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

这不是代码高尔夫,但这里是我使用类型的最短技巧。SimpleNamespace作为JSON对象的容器。

与namedtuple解决方案相比,它是:

可能更快/更小,因为它没有为每个对象创建一个类 更短的 没有重命名选项,对于不是有效标识符的键可能有相同的限制(在幕后使用setattr)

例子:

from __future__ import print_function
import json

try:
    from types import SimpleNamespace as Namespace
except ImportError:
    # Python 2.x fallback
    from argparse import Namespace

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

x = json.loads(data, object_hook=lambda d: Namespace(**d))

print (x.name, x.hometown.name, x.hometown.id)

其他回答

在寻找解决方案时,我偶然发现了这个博客:https://blog.mosthege.net/2016/11/12/json-deserialization-of-nested-objects/

它使用与前面回答中相同的技术,但使用了装饰器。 我发现另一件有用的事情是,它在反序列化结束时返回一个类型化对象

class JsonConvert(object):
    class_mappings = {}

    @classmethod
    def class_mapper(cls, d):
        for keys, cls in clsself.mappings.items():
            if keys.issuperset(d.keys()):   # are all required arguments present?
                return cls(**d)
        else:
            # Raise exception instead of silently returning None
            raise ValueError('Unable to find a matching class for object: {!s}'.format(d))

    @classmethod
    def complex_handler(cls, Obj):
        if hasattr(Obj, '__dict__'):
            return Obj.__dict__
        else:
            raise TypeError('Object of type %s with value of %s is not JSON serializable' % (type(Obj), repr(Obj)))

    @classmethod
    def register(cls, claz):
        clsself.mappings[frozenset(tuple([attr for attr,val in cls().__dict__.items()]))] = cls
        return cls

    @classmethod
    def to_json(cls, obj):
        return json.dumps(obj.__dict__, default=cls.complex_handler, indent=4)

    @classmethod
    def from_json(cls, json_str):
        return json.loads(json_str, object_hook=cls.class_mapper)

用法:

@JsonConvert.register
class Employee(object):
    def __init__(self, Name:int=None, Age:int=None):
        self.Name = Name
        self.Age = Age
        return

@JsonConvert.register
class Company(object):
    def __init__(self, Name:str="", Employees:[Employee]=None):
        self.Name = Name
        self.Employees = [] if Employees is None else Employees
        return

company = Company("Contonso")
company.Employees.append(Employee("Werner", 38))
company.Employees.append(Employee("Mary"))

as_json = JsonConvert.to_json(company)
from_json = JsonConvert.from_json(as_json)
as_json_from_json = JsonConvert.to_json(from_json)

assert(as_json_from_json == as_json)

print(as_json_from_json)

如果你正在寻找将JSON或任何复杂字典的类型安全反序列化到python类中,我强烈推荐python 3.7+的pydantic。它不仅有一个简洁的API(不需要编写“helper”样板),可以与Python数据类集成,而且具有复杂和嵌套数据结构的静态和运行时类型验证。

使用示例:

from pydantic import BaseModel
from datetime import datetime

class Item(BaseModel):
    field1: str | int           # union
    field2: int | None = None   # optional
    field3: str = 'default'     # default values

class User(BaseModel):
    name: str | None = None
    username: str
    created: datetime           # default type converters
    items: list[Item] = []      # nested complex types

data = {
    'name': 'Jane Doe',
    'username': 'user1',
    'created': '2020-12-31T23:59:00+10:00',
    'items': [
        {'field1': 1, 'field2': 2},
        {'field1': 'b'},
        {'field1': 'c', 'field3': 'override'}
    ]
}

user: User = User(**data)

要了解更多细节和特性,请查看文档中的pydantic的rational部分。

改进lovasoa非常好的答案。

如果你正在使用python 3.6+,你可以使用: PIP安装棉花糖-enum和 PIP安装棉花糖数据类

它简单且类型安全。

你可以在string-json中转换你的类,反之亦然:

从对象到字符串Json:

    from marshmallow_dataclass import dataclass
    user = User("Danilo","50","RedBull",15,OrderStatus.CREATED)
    user_json = User.Schema().dumps(user)
    user_json_str = user_json.data

从String Json到Object:

    json_str = '{"name":"Danilo", "orderId":"50", "productName":"RedBull", "quantity":15, "status":"Created"}'
    user, err = User.Schema().loads(json_str)
    print(user,flush=True)

类定义:

class OrderStatus(Enum):
    CREATED = 'Created'
    PENDING = 'Pending'
    CONFIRMED = 'Confirmed'
    FAILED = 'Failed'

@dataclass
class User:
    def __init__(self, name, orderId, productName, quantity, status):
        self.name = name
        self.orderId = orderId
        self.productName = productName
        self.quantity = quantity
        self.status = status

    name: str
    orderId: str
    productName: str
    quantity: int
    status: OrderStatus

如果你正在使用python 3.6+,你可以使用棉花糖-数据类。与上面列出的所有解决方案相反,它既简单,又类型安全:

from marshmallow_dataclass import dataclass

@dataclass
class User:
    name: str

user = User.Schema().load({"name": "Ramirez"})

扩展一下DS的答案,如果你需要对象是可变的(而namedtuple不是),你可以使用记录类库而不是namedtuple:

import json
from recordclass import recordclass

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse into a mutable object
x = json.loads(data, object_hook=lambda d: recordclass('X', d.keys())(*d.values()))

修改后的对象可以使用simplejson很容易地转换回json:

x.name = "John Doe"
new_json = simplejson.dumps(x)