我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

Dacite也可能是您的解决方案,它支持以下功能:

嵌套结构 (基本)类型检查 可选字段(即typing.Optional) 工会 向前引用 集合 自定义类型钩子

https://pypi.org/project/dacite/

from dataclasses import dataclass
from dacite import from_dict


@dataclass
class User:
    name: str
    age: int
    is_active: bool


data = {
    'name': 'John',
    'age': 30,
    'is_active': True,
}

user = from_dict(data_class=User, data=data)

assert user == User(name='John', age=30, is_active=True)

其他回答

我已经编写了一个名为any2any的小型(反)序列化框架,它可以帮助在两种Python类型之间进行复杂的转换。

在您的情况下,我猜您想从字典(通过json.loads获得)转换为复杂的对象response.education;Response.name,具有嵌套结构response.education.id,等等… 这就是这个框架的用途。文档还不是很好,但是通过使用any2any.simple。MappingToObject,你应该可以很容易地做到。如果需要帮助,请询问。

这似乎是一个XY问题(问A实际问题在哪里B)。

问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?

使用抢

from glom import glom

# Basic deep get

data = {'a': {'b': {'c': 'd'}}}

print(glom(data, 'a.b.c'))

它还将处理列表项:

我已经对一个简单的实现进行了基准测试:

def extract(J, levels):
    # Twice as fast as using glom
    for level in levels.split('.'):
        J = J[int(level) if level.isnumeric() else level]
    return J

... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。

它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'

编辑:

另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:

class Ob:
    def __init__(self, J):
        self.J = J

    def __getitem__(self, index):
        return Ob(self.J[index])

    def __getattr__(self, attr):
        value = self.J.get(attr, None)
        return Ob(value) if type(value) in (list, dict) else value

现在你可以做:

ob = Ob(J)

# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf

# for intermediate values
ob.foo.bar[42].quux.J

这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!

查看JSON模块文档中的专门化JSON对象解码一节。您可以使用它将JSON对象解码为特定的Python类型。

这里有一个例子:

class User(object):
    def __init__(self, name, username):
        self.name = name
        self.username = username

import json
def object_decoder(obj):
    if '__type__' in obj and obj['__type__'] == 'User':
        return User(obj['name'], obj['username'])
    return obj

json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}',
           object_hook=object_decoder)

print type(User)  # -> <type 'type'>

更新

如果你想通过json模块访问字典中的数据,可以这样做:

user = json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}')
print user['name']
print user['username']

就像一本普通的字典。

Python3.x

以我的知识,我能找到的最好的方法是。 注意,这段代码也处理set()。 这种方法是通用的,只需要类的扩展(在第二个例子中)。 请注意,我只是对文件执行此操作,但是很容易根据自己的喜好修改行为。

然而,这是一个编解码器。

再做一点工作,就可以用其他方式构造类。 我假设有一个默认构造函数来实例它,然后更新类dict。

import json
import collections


class JsonClassSerializable(json.JSONEncoder):

    REGISTERED_CLASS = {}

    def register(ctype):
        JsonClassSerializable.REGISTERED_CLASS[ctype.__name__] = ctype

    def default(self, obj):
        if isinstance(obj, collections.Set):
            return dict(_set_object=list(obj))
        if isinstance(obj, JsonClassSerializable):
            jclass = {}
            jclass["name"] = type(obj).__name__
            jclass["dict"] = obj.__dict__
            return dict(_class_object=jclass)
        else:
            return json.JSONEncoder.default(self, obj)

    def json_to_class(self, dct):
        if '_set_object' in dct:
            return set(dct['_set_object'])
        elif '_class_object' in dct:
            cclass = dct['_class_object']
            cclass_name = cclass["name"]
            if cclass_name not in self.REGISTERED_CLASS:
                raise RuntimeError(
                    "Class {} not registered in JSON Parser"
                    .format(cclass["name"])
                )
            instance = self.REGISTERED_CLASS[cclass_name]()
            instance.__dict__ = cclass["dict"]
            return instance
        return dct

    def encode_(self, file):
        with open(file, 'w') as outfile:
            json.dump(
                self.__dict__, outfile,
                cls=JsonClassSerializable,
                indent=4,
                sort_keys=True
            )

    def decode_(self, file):
        try:
            with open(file, 'r') as infile:
                self.__dict__ = json.load(
                    infile,
                    object_hook=self.json_to_class
                )
        except FileNotFoundError:
            print("Persistence load failed "
                  "'{}' do not exists".format(file)
                  )


class C(JsonClassSerializable):

    def __init__(self):
        self.mill = "s"


JsonClassSerializable.register(C)


class B(JsonClassSerializable):

    def __init__(self):
        self.a = 1230
        self.c = C()


JsonClassSerializable.register(B)


class A(JsonClassSerializable):

    def __init__(self):
        self.a = 1
        self.b = {1, 2}
        self.c = B()

JsonClassSerializable.register(A)

A().encode_("test")
b = A()
b.decode_("test")
print(b.a)
print(b.b)
print(b.c.a)

Edit

通过更多的研究,我发现了一种不需要SUPERCLASS寄存器方法调用的泛化方法,使用元类

import json
import collections

REGISTERED_CLASS = {}

class MetaSerializable(type):

    def __call__(cls, *args, **kwargs):
        if cls.__name__ not in REGISTERED_CLASS:
            REGISTERED_CLASS[cls.__name__] = cls
        return super(MetaSerializable, cls).__call__(*args, **kwargs)


class JsonClassSerializable(json.JSONEncoder, metaclass=MetaSerializable):

    def default(self, obj):
        if isinstance(obj, collections.Set):
            return dict(_set_object=list(obj))
        if isinstance(obj, JsonClassSerializable):
            jclass = {}
            jclass["name"] = type(obj).__name__
            jclass["dict"] = obj.__dict__
            return dict(_class_object=jclass)
        else:
            return json.JSONEncoder.default(self, obj)

    def json_to_class(self, dct):
        if '_set_object' in dct:
            return set(dct['_set_object'])
        elif '_class_object' in dct:
            cclass = dct['_class_object']
            cclass_name = cclass["name"]
            if cclass_name not in REGISTERED_CLASS:
                raise RuntimeError(
                    "Class {} not registered in JSON Parser"
                    .format(cclass["name"])
                )
            instance = REGISTERED_CLASS[cclass_name]()
            instance.__dict__ = cclass["dict"]
            return instance
        return dct

    def encode_(self, file):
        with open(file, 'w') as outfile:
            json.dump(
                self.__dict__, outfile,
                cls=JsonClassSerializable,
                indent=4,
                sort_keys=True
            )

    def decode_(self, file):
        try:
            with open(file, 'r') as infile:
                self.__dict__ = json.load(
                    infile,
                    object_hook=self.json_to_class
                )
        except FileNotFoundError:
            print("Persistence load failed "
                  "'{}' do not exists".format(file)
                  )


class C(JsonClassSerializable):

    def __init__(self):
        self.mill = "s"


class B(JsonClassSerializable):

    def __init__(self):
        self.a = 1230
        self.c = C()


class A(JsonClassSerializable):

    def __init__(self):
        self.a = 1
        self.b = {1, 2}
        self.c = B()


A().encode_("test")
b = A()
b.decode_("test")
print(b.a)
# 1
print(b.b)
# {1, 2}
print(b.c.a)
# 1230
print(b.c.c.mill)
# s

更新

在Python3中,你可以使用SimpleNamespace和object_hook在一行中完成:

import json
from types import SimpleNamespace

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: SimpleNamespace(**d))
print(x.name, x.hometown.name, x.hometown.id)

旧答案(Python2)

在Python2中,你可以使用namedtuple和object_hook在一行中完成(但对于嵌套对象非常慢):

import json
from collections import namedtuple

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values()))
print x.name, x.hometown.name, x.hometown.id

或者,为了便于重用:

def _json_object_hook(d): return namedtuple('X', d.keys())(*d.values())
def json2obj(data): return json.loads(data, object_hook=_json_object_hook)

x = json2obj(data)

如果希望它处理不是很好的属性名称的键,请检查namedtuple的rename参数。