我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

查看JSON模块文档中的专门化JSON对象解码一节。您可以使用它将JSON对象解码为特定的Python类型。

这里有一个例子:

class User(object):
    def __init__(self, name, username):
        self.name = name
        self.username = username

import json
def object_decoder(obj):
    if '__type__' in obj and obj['__type__'] == 'User':
        return User(obj['name'], obj['username'])
    return obj

json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}',
           object_hook=object_decoder)

print type(User)  # -> <type 'type'>

更新

如果你想通过json模块访问字典中的数据,可以这样做:

user = json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}')
print user['name']
print user['username']

就像一本普通的字典。

其他回答

查看JSON模块文档中的专门化JSON对象解码一节。您可以使用它将JSON对象解码为特定的Python类型。

这里有一个例子:

class User(object):
    def __init__(self, name, username):
        self.name = name
        self.username = username

import json
def object_decoder(obj):
    if '__type__' in obj and obj['__type__'] == 'User':
        return User(obj['name'], obj['username'])
    return obj

json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}',
           object_hook=object_decoder)

print type(User)  # -> <type 'type'>

更新

如果你想通过json模块访问字典中的数据,可以这样做:

user = json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}')
print user['name']
print user['username']

就像一本普通的字典。

这里给出的答案没有返回正确的对象类型,因此我在下面创建了这些方法。如果你试图向给定JSON中不存在的类中添加更多字段,它们也会失败:

def dict_to_class(class_name: Any, dictionary: dict) -> Any:
    instance = class_name()
    for key in dictionary.keys():
        setattr(instance, key, dictionary[key])
    return instance


def json_to_class(class_name: Any, json_string: str) -> Any:
    dict_object = json.loads(json_string)
    return dict_to_class(class_name, dict_object)

如果你正在寻找将JSON或任何复杂字典的类型安全反序列化到python类中,我强烈推荐python 3.7+的pydantic。它不仅有一个简洁的API(不需要编写“helper”样板),可以与Python数据类集成,而且具有复杂和嵌套数据结构的静态和运行时类型验证。

使用示例:

from pydantic import BaseModel
from datetime import datetime

class Item(BaseModel):
    field1: str | int           # union
    field2: int | None = None   # optional
    field3: str = 'default'     # default values

class User(BaseModel):
    name: str | None = None
    username: str
    created: datetime           # default type converters
    items: list[Item] = []      # nested complex types

data = {
    'name': 'Jane Doe',
    'username': 'user1',
    'created': '2020-12-31T23:59:00+10:00',
    'items': [
        {'field1': 1, 'field2': 2},
        {'field1': 'b'},
        {'field1': 'c', 'field3': 'override'}
    ]
}

user: User = User(**data)

要了解更多细节和特性,请查看文档中的pydantic的rational部分。

如果你使用的是Python 3.6或更新版本,你可以看看squema——一个用于静态类型数据结构的轻量级模块。它使您的代码易于阅读,同时提供简单的数据验证,转换和序列化,而无需额外的工作。你可以把它看作是命名元组和数据类的一种更复杂、更有见解的选择。下面是你如何使用它:

from uuid import UUID
from squema import Squema


class FbApiUser(Squema):
    id: UUID
    age: int
    name: str

    def save(self):
        pass


user = FbApiUser(**json.loads(response))
user.save()

如果你正在使用python 3.6+,你可以使用棉花糖-数据类。与上面列出的所有解决方案相反,它既简单,又类型安全:

from marshmallow_dataclass import dataclass

@dataclass
class User:
    name: str

user = User.Schema().load({"name": "Ramirez"})