我想将JSON数据转换为Python对象。
我从Facebook API收到JSON数据对象,我想将其存储在数据库中。
我的当前视图在Django (Python)(请求。POST包含JSON):
response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()
这很好,但是如何处理复杂的JSON数据对象呢?
如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?
更新
在Python3中,你可以使用SimpleNamespace和object_hook在一行中完成:
import json
from types import SimpleNamespace
data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'
# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: SimpleNamespace(**d))
print(x.name, x.hometown.name, x.hometown.id)
旧答案(Python2)
在Python2中,你可以使用namedtuple和object_hook在一行中完成(但对于嵌套对象非常慢):
import json
from collections import namedtuple
data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'
# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values()))
print x.name, x.hometown.name, x.hometown.id
或者,为了便于重用:
def _json_object_hook(d): return namedtuple('X', d.keys())(*d.values())
def json2obj(data): return json.loads(data, object_hook=_json_object_hook)
x = json2obj(data)
如果希望它处理不是很好的属性名称的键,请检查namedtuple的rename参数。
Dacite也可能是您的解决方案,它支持以下功能:
嵌套结构
(基本)类型检查
可选字段(即typing.Optional)
工会
向前引用
集合
自定义类型钩子
https://pypi.org/project/dacite/
from dataclasses import dataclass
from dacite import from_dict
@dataclass
class User:
name: str
age: int
is_active: bool
data = {
'name': 'John',
'age': 30,
'is_active': True,
}
user = from_dict(data_class=User, data=data)
assert user == User(name='John', age=30, is_active=True)
你可以试试这个:
class User(object):
def __init__(self, name, username):
self.name = name
self.username = username
import json
j = json.loads(your_json)
u = User(**j)
只需创建一个新对象,并将参数作为映射传递。
你也可以有一个带有对象的JSON:
import json
class Address(object):
def __init__(self, street, number):
self.street = street
self.number = number
def __str__(self):
return "{0} {1}".format(self.street, self.number)
class User(object):
def __init__(self, name, address):
self.name = name
self.address = Address(**address)
def __str__(self):
return "{0} ,{1}".format(self.name, self.address)
if __name__ == '__main__':
js = '''{"name":"Cristian", "address":{"street":"Sesame","number":122}}'''
j = json.loads(js)
print(j)
u = User(**j)
print(u)
修改@DS响应位,从一个文件加载:
def _json_object_hook(d): return namedtuple('X', d.keys())(*d.values())
def load_data(file_name):
with open(file_name, 'r') as file_data:
return file_data.read().replace('\n', '')
def json2obj(file_name): return json.loads(load_data(file_name), object_hook=_json_object_hook)
有一点:它不能加载前面有数字的项目。是这样的:
{
"1_first_item": {
"A": "1",
"B": "2"
}
}
因为“1_first_item”不是一个有效的python字段名。
这似乎是一个XY问题(问A实际问题在哪里B)。
问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?
使用抢
from glom import glom
# Basic deep get
data = {'a': {'b': {'c': 'd'}}}
print(glom(data, 'a.b.c'))
它还将处理列表项:
我已经对一个简单的实现进行了基准测试:
def extract(J, levels):
# Twice as fast as using glom
for level in levels.split('.'):
J = J[int(level) if level.isnumeric() else level]
return J
... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。
它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'
编辑:
另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:
class Ob:
def __init__(self, J):
self.J = J
def __getitem__(self, index):
return Ob(self.J[index])
def __getattr__(self, attr):
value = self.J.get(attr, None)
return Ob(value) if type(value) in (list, dict) else value
现在你可以做:
ob = Ob(J)
# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf
# for intermediate values
ob.foo.bar[42].quux.J
这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!