我想将JSON数据转换为Python对象。
我从Facebook API收到JSON数据对象,我想将其存储在数据库中。
我的当前视图在Django (Python)(请求。POST包含JSON):
response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()
这很好,但是如何处理复杂的JSON数据对象呢?
如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?
在寻找解决方案时,我偶然发现了这个博客:https://blog.mosthege.net/2016/11/12/json-deserialization-of-nested-objects/
它使用与前面回答中相同的技术,但使用了装饰器。
我发现另一件有用的事情是,它在反序列化结束时返回一个类型化对象
class JsonConvert(object):
class_mappings = {}
@classmethod
def class_mapper(cls, d):
for keys, cls in clsself.mappings.items():
if keys.issuperset(d.keys()): # are all required arguments present?
return cls(**d)
else:
# Raise exception instead of silently returning None
raise ValueError('Unable to find a matching class for object: {!s}'.format(d))
@classmethod
def complex_handler(cls, Obj):
if hasattr(Obj, '__dict__'):
return Obj.__dict__
else:
raise TypeError('Object of type %s with value of %s is not JSON serializable' % (type(Obj), repr(Obj)))
@classmethod
def register(cls, claz):
clsself.mappings[frozenset(tuple([attr for attr,val in cls().__dict__.items()]))] = cls
return cls
@classmethod
def to_json(cls, obj):
return json.dumps(obj.__dict__, default=cls.complex_handler, indent=4)
@classmethod
def from_json(cls, json_str):
return json.loads(json_str, object_hook=cls.class_mapper)
用法:
@JsonConvert.register
class Employee(object):
def __init__(self, Name:int=None, Age:int=None):
self.Name = Name
self.Age = Age
return
@JsonConvert.register
class Company(object):
def __init__(self, Name:str="", Employees:[Employee]=None):
self.Name = Name
self.Employees = [] if Employees is None else Employees
return
company = Company("Contonso")
company.Employees.append(Employee("Werner", 38))
company.Employees.append(Employee("Mary"))
as_json = JsonConvert.to_json(company)
from_json = JsonConvert.from_json(as_json)
as_json_from_json = JsonConvert.to_json(from_json)
assert(as_json_from_json == as_json)
print(as_json_from_json)
数据类向导是一种现代的选项,可以类似地为您工作。它支持自动键大小写转换,如camelCase或TitleCase,这两者在API响应中都很常见。
当将实例转储到dict/JSON时,默认的键转换是camelCase,但这可以很容易地使用主数据类上提供的Meta配置来覆盖。
https://pypi.org/project/dataclass-wizard/
from dataclasses import dataclass
from dataclass_wizard import fromdict, asdict
@dataclass
class User:
name: str
age: int
is_active: bool
data = {
'name': 'John',
'age': 30,
'isActive': True,
}
user = fromdict(User, data)
assert user == User(name='John', age=30, is_active=True)
json_dict = asdict(user)
assert json_dict == {'name': 'John', 'age': 30, 'isActive': True}
设置元配置的例子,当序列化为dict/JSON时,将字段转换为lisp-case:
DumpMeta(key_transform='LISP').bind_to(User)
这不是代码高尔夫,但这里是我使用类型的最短技巧。SimpleNamespace作为JSON对象的容器。
与namedtuple解决方案相比,它是:
可能更快/更小,因为它没有为每个对象创建一个类
更短的
没有重命名选项,对于不是有效标识符的键可能有相同的限制(在幕后使用setattr)
例子:
from __future__ import print_function
import json
try:
from types import SimpleNamespace as Namespace
except ImportError:
# Python 2.x fallback
from argparse import Namespace
data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'
x = json.loads(data, object_hook=lambda d: Namespace(**d))
print (x.name, x.hometown.name, x.hometown.id)
我认为最简单的解决方法是
import orjson # faster then json =)
from typing import NamedTuple
_j = '{"name":"Иван","age":37,"mother":{"name":"Ольга","age":58},"children":["Маша","Игорь","Таня"],"married": true,' \
'"dog":null} '
class PersonNameAge(NamedTuple):
name: str
age: int
class UserInfo(NamedTuple):
name: str
age: int
mother: PersonNameAge
children: list
married: bool
dog: str
j = orjson.loads(_j)
u = UserInfo(**j)
print(u.name, u.age, u.mother, u.children, u.married, u.dog)
>>> Ivan 37 {'name': 'Olga', 'age': 58} ['Mary', 'Igor', 'Jane'] True None
如果你正在寻找将JSON或任何复杂字典的类型安全反序列化到python类中,我强烈推荐python 3.7+的pydantic。它不仅有一个简洁的API(不需要编写“helper”样板),可以与Python数据类集成,而且具有复杂和嵌套数据结构的静态和运行时类型验证。
使用示例:
from pydantic import BaseModel
from datetime import datetime
class Item(BaseModel):
field1: str | int # union
field2: int | None = None # optional
field3: str = 'default' # default values
class User(BaseModel):
name: str | None = None
username: str
created: datetime # default type converters
items: list[Item] = [] # nested complex types
data = {
'name': 'Jane Doe',
'username': 'user1',
'created': '2020-12-31T23:59:00+10:00',
'items': [
{'field1': 1, 'field2': 2},
{'field1': 'b'},
{'field1': 'c', 'field3': 'override'}
]
}
user: User = User(**data)
要了解更多细节和特性,请查看文档中的pydantic的rational部分。
这似乎是一个XY问题(问A实际问题在哪里B)。
问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?
使用抢
from glom import glom
# Basic deep get
data = {'a': {'b': {'c': 'd'}}}
print(glom(data, 'a.b.c'))
它还将处理列表项:
我已经对一个简单的实现进行了基准测试:
def extract(J, levels):
# Twice as fast as using glom
for level in levels.split('.'):
J = J[int(level) if level.isnumeric() else level]
return J
... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。
它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'
编辑:
另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:
class Ob:
def __init__(self, J):
self.J = J
def __getitem__(self, index):
return Ob(self.J[index])
def __getattr__(self, attr):
value = self.J.get(attr, None)
return Ob(value) if type(value) in (list, dict) else value
现在你可以做:
ob = Ob(J)
# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf
# for intermediate values
ob.foo.bar[42].quux.J
这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!