我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

这不是一个很难的事情,我看到上面的答案,他们中的大多数在“列表”中有一个性能问题

这段代码比上面的代码快得多

import json 

class jsonify:
    def __init__(self, data):
        self.jsonify = data

    def __getattr__(self, attr):
        value = self.jsonify.get(attr)
        if isinstance(value, (list, dict)):
            return jsonify(value)
        return value

    def __getitem__(self, index):
        value = self.jsonify[index]
        if isinstance(value, (list, dict)):
            return jsonify(value)
        return value

    def __setitem__(self, index, value):
        self.jsonify[index] = value

    def __delattr__(self, index):
        self.jsonify.pop(index)

    def __delitem__(self, index):
        self.jsonify.pop(index)

    def __repr__(self):
        return json.dumps(self.jsonify, indent=2, default=lambda x: str(x))

exmaple

response = jsonify(
    {
        'test': {
            'test1': [{'ok': 1}]
        }
    }
)
response.test -> jsonify({'test1': [{'ok': 1}]})
response.test.test1 -> jsonify([{'ok': 1}])
response.test.test1[0] -> jsonify({'ok': 1})
response.test.test1[0].ok -> int(1)

其他回答

扩展一下DS的答案,如果你需要对象是可变的(而namedtuple不是),你可以使用记录类库而不是namedtuple:

import json
from recordclass import recordclass

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse into a mutable object
x = json.loads(data, object_hook=lambda d: recordclass('X', d.keys())(*d.values()))

修改后的对象可以使用simplejson很容易地转换回json:

x.name = "John Doe"
new_json = simplejson.dumps(x)

Python3.x

以我的知识,我能找到的最好的方法是。 注意,这段代码也处理set()。 这种方法是通用的,只需要类的扩展(在第二个例子中)。 请注意,我只是对文件执行此操作,但是很容易根据自己的喜好修改行为。

然而,这是一个编解码器。

再做一点工作,就可以用其他方式构造类。 我假设有一个默认构造函数来实例它,然后更新类dict。

import json
import collections


class JsonClassSerializable(json.JSONEncoder):

    REGISTERED_CLASS = {}

    def register(ctype):
        JsonClassSerializable.REGISTERED_CLASS[ctype.__name__] = ctype

    def default(self, obj):
        if isinstance(obj, collections.Set):
            return dict(_set_object=list(obj))
        if isinstance(obj, JsonClassSerializable):
            jclass = {}
            jclass["name"] = type(obj).__name__
            jclass["dict"] = obj.__dict__
            return dict(_class_object=jclass)
        else:
            return json.JSONEncoder.default(self, obj)

    def json_to_class(self, dct):
        if '_set_object' in dct:
            return set(dct['_set_object'])
        elif '_class_object' in dct:
            cclass = dct['_class_object']
            cclass_name = cclass["name"]
            if cclass_name not in self.REGISTERED_CLASS:
                raise RuntimeError(
                    "Class {} not registered in JSON Parser"
                    .format(cclass["name"])
                )
            instance = self.REGISTERED_CLASS[cclass_name]()
            instance.__dict__ = cclass["dict"]
            return instance
        return dct

    def encode_(self, file):
        with open(file, 'w') as outfile:
            json.dump(
                self.__dict__, outfile,
                cls=JsonClassSerializable,
                indent=4,
                sort_keys=True
            )

    def decode_(self, file):
        try:
            with open(file, 'r') as infile:
                self.__dict__ = json.load(
                    infile,
                    object_hook=self.json_to_class
                )
        except FileNotFoundError:
            print("Persistence load failed "
                  "'{}' do not exists".format(file)
                  )


class C(JsonClassSerializable):

    def __init__(self):
        self.mill = "s"


JsonClassSerializable.register(C)


class B(JsonClassSerializable):

    def __init__(self):
        self.a = 1230
        self.c = C()


JsonClassSerializable.register(B)


class A(JsonClassSerializable):

    def __init__(self):
        self.a = 1
        self.b = {1, 2}
        self.c = B()

JsonClassSerializable.register(A)

A().encode_("test")
b = A()
b.decode_("test")
print(b.a)
print(b.b)
print(b.c.a)

Edit

通过更多的研究,我发现了一种不需要SUPERCLASS寄存器方法调用的泛化方法,使用元类

import json
import collections

REGISTERED_CLASS = {}

class MetaSerializable(type):

    def __call__(cls, *args, **kwargs):
        if cls.__name__ not in REGISTERED_CLASS:
            REGISTERED_CLASS[cls.__name__] = cls
        return super(MetaSerializable, cls).__call__(*args, **kwargs)


class JsonClassSerializable(json.JSONEncoder, metaclass=MetaSerializable):

    def default(self, obj):
        if isinstance(obj, collections.Set):
            return dict(_set_object=list(obj))
        if isinstance(obj, JsonClassSerializable):
            jclass = {}
            jclass["name"] = type(obj).__name__
            jclass["dict"] = obj.__dict__
            return dict(_class_object=jclass)
        else:
            return json.JSONEncoder.default(self, obj)

    def json_to_class(self, dct):
        if '_set_object' in dct:
            return set(dct['_set_object'])
        elif '_class_object' in dct:
            cclass = dct['_class_object']
            cclass_name = cclass["name"]
            if cclass_name not in REGISTERED_CLASS:
                raise RuntimeError(
                    "Class {} not registered in JSON Parser"
                    .format(cclass["name"])
                )
            instance = REGISTERED_CLASS[cclass_name]()
            instance.__dict__ = cclass["dict"]
            return instance
        return dct

    def encode_(self, file):
        with open(file, 'w') as outfile:
            json.dump(
                self.__dict__, outfile,
                cls=JsonClassSerializable,
                indent=4,
                sort_keys=True
            )

    def decode_(self, file):
        try:
            with open(file, 'r') as infile:
                self.__dict__ = json.load(
                    infile,
                    object_hook=self.json_to_class
                )
        except FileNotFoundError:
            print("Persistence load failed "
                  "'{}' do not exists".format(file)
                  )


class C(JsonClassSerializable):

    def __init__(self):
        self.mill = "s"


class B(JsonClassSerializable):

    def __init__(self):
        self.a = 1230
        self.c = C()


class A(JsonClassSerializable):

    def __init__(self):
        self.a = 1
        self.b = {1, 2}
        self.c = B()


A().encode_("test")
b = A()
b.decode_("test")
print(b.a)
# 1
print(b.b)
# {1, 2}
print(b.c.a)
# 1230
print(b.c.c.mill)
# s

在寻找解决方案时,我偶然发现了这个博客:https://blog.mosthege.net/2016/11/12/json-deserialization-of-nested-objects/

它使用与前面回答中相同的技术,但使用了装饰器。 我发现另一件有用的事情是,它在反序列化结束时返回一个类型化对象

class JsonConvert(object):
    class_mappings = {}

    @classmethod
    def class_mapper(cls, d):
        for keys, cls in clsself.mappings.items():
            if keys.issuperset(d.keys()):   # are all required arguments present?
                return cls(**d)
        else:
            # Raise exception instead of silently returning None
            raise ValueError('Unable to find a matching class for object: {!s}'.format(d))

    @classmethod
    def complex_handler(cls, Obj):
        if hasattr(Obj, '__dict__'):
            return Obj.__dict__
        else:
            raise TypeError('Object of type %s with value of %s is not JSON serializable' % (type(Obj), repr(Obj)))

    @classmethod
    def register(cls, claz):
        clsself.mappings[frozenset(tuple([attr for attr,val in cls().__dict__.items()]))] = cls
        return cls

    @classmethod
    def to_json(cls, obj):
        return json.dumps(obj.__dict__, default=cls.complex_handler, indent=4)

    @classmethod
    def from_json(cls, json_str):
        return json.loads(json_str, object_hook=cls.class_mapper)

用法:

@JsonConvert.register
class Employee(object):
    def __init__(self, Name:int=None, Age:int=None):
        self.Name = Name
        self.Age = Age
        return

@JsonConvert.register
class Company(object):
    def __init__(self, Name:str="", Employees:[Employee]=None):
        self.Name = Name
        self.Employees = [] if Employees is None else Employees
        return

company = Company("Contonso")
company.Employees.append(Employee("Werner", 38))
company.Employees.append(Employee("Mary"))

as_json = JsonConvert.to_json(company)
from_json = JsonConvert.from_json(as_json)
as_json_from_json = JsonConvert.to_json(from_json)

assert(as_json_from_json == as_json)

print(as_json_from_json)

这似乎是一个XY问题(问A实际问题在哪里B)。

问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?

使用抢

from glom import glom

# Basic deep get

data = {'a': {'b': {'c': 'd'}}}

print(glom(data, 'a.b.c'))

它还将处理列表项:

我已经对一个简单的实现进行了基准测试:

def extract(J, levels):
    # Twice as fast as using glom
    for level in levels.split('.'):
        J = J[int(level) if level.isnumeric() else level]
    return J

... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。

它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'

编辑:

另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:

class Ob:
    def __init__(self, J):
        self.J = J

    def __getitem__(self, index):
        return Ob(self.J[index])

    def __getattr__(self, attr):
        value = self.J.get(attr, None)
        return Ob(value) if type(value) in (list, dict) else value

现在你可以做:

ob = Ob(J)

# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf

# for intermediate values
ob.foo.bar[42].quux.J

这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!

使用json模块(Python 2.6新增)或几乎总是安装的simplejson模块。