我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

扩展一下DS的答案,如果你需要对象是可变的(而namedtuple不是),你可以使用记录类库而不是namedtuple:

import json
from recordclass import recordclass

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse into a mutable object
x = json.loads(data, object_hook=lambda d: recordclass('X', d.keys())(*d.values()))

修改后的对象可以使用simplejson很容易地转换回json:

x.name = "John Doe"
new_json = simplejson.dumps(x)

其他回答

使用python 3.7,我发现下面的代码非常简单有效。在本例中,将JSON从文件加载到字典中:

class Characteristic:
    def __init__(self, characteristicName, characteristicUUID):
        self.characteristicName = characteristicName
        self.characteristicUUID = characteristicUUID


class Service:
    def __init__(self, serviceName, serviceUUID, characteristics):
        self.serviceName = serviceName
        self.serviceUUID = serviceUUID
        self.characteristics = characteristics

class Definitions:
    def __init__(self, services):
        self.services = []
        for service in services:
            self.services.append(Service(**service))


def main():
    parser = argparse.ArgumentParser(
        prog="BLEStructureGenerator",
        description="Taking in a JSON input file which lists all of the services, "
                    "characteristics and encoded properties. The encoding takes in "
                    "another optional template services and/or characteristics "
                    "file where the JSON file contents are applied to the templates.",
        epilog="Copyright Brown & Watson International"
    )

    parser.add_argument('definitionfile',
                        type=argparse.FileType('r', encoding='UTF-8'),
                        help="JSON file which contains the list of characteristics and "
                             "services in the required format")
    parser.add_argument('-s', '--services',
                        type=argparse.FileType('r', encoding='UTF-8'),
                        help="Services template file to be used for each service in the "
                             "JSON file list")
    parser.add_argument('-c', '--characteristics',
                        type=argparse.FileType('r', encoding='UTF-8'),
                        help="Characteristics template file to be used for each service in the "
                             "JSON file list")

    args = parser.parse_args()
    definition_dict = json.load(args.definitionfile)
    definitions = Definitions(**definition_dict)

因此,我正在寻找一种不需要大量自定义反序列化代码就能解组任意类型(想想数据类的字典,或者数据类数组的字典的字典)的方法。

这是我的方法:

import json
from dataclasses import dataclass, make_dataclass

from dataclasses_json import DataClassJsonMixin, dataclass_json


@dataclass_json
@dataclass
class Person:
    name: str


def unmarshal_json(data, t):
    Unmarhsal = make_dataclass('Unmarhsal', [('res', t)],
                               bases=(DataClassJsonMixin,))
    d = json.loads(data)
    out = Unmarhsal.from_dict({"res": d})
    return out.res


unmarshalled = unmarshal_json('{"1": {"name": "john"} }', dict[str, Person])
print(unmarshalled)

打印:{'1':Person(name='john')}

我正在寻找一个与recordclass一起工作的解决方案。RecordClass,支持嵌套对象,可用于json序列化和json反序列化。

扩展DS的答案,扩展BeneStr的解决方案,我想出了以下似乎有效的方法:

代码:

import json
import recordclass

class NestedRec(recordclass.RecordClass):
    a : int = 0
    b : int = 0

class ExampleRec(recordclass.RecordClass):
    x : int       = None
    y : int       = None
    nested : NestedRec = NestedRec()

class JsonSerializer:
    @staticmethod
    def dumps(obj, ensure_ascii=True, indent=None, sort_keys=False):
        return json.dumps(obj, default=JsonSerializer.__obj_to_dict, ensure_ascii=ensure_ascii, indent=indent, sort_keys=sort_keys)

    @staticmethod
    def loads(s, klass):
        return JsonSerializer.__dict_to_obj(klass, json.loads(s))

    @staticmethod
    def __obj_to_dict(obj):
        if hasattr(obj, "_asdict"):
            return obj._asdict()
        else:
            return json.JSONEncoder().default(obj)

    @staticmethod
    def __dict_to_obj(klass, s_dict):
        kwargs = {
            key : JsonSerializer.__dict_to_obj(cls, s_dict[key]) if hasattr(cls,'_asdict') else s_dict[key] \
                for key,cls in klass.__annotations__.items() \
                    if s_dict is not None and key in s_dict
        }
        return klass(**kwargs)

用法:

example_0 = ExampleRec(x = 10, y = 20, nested = NestedRec( a = 30, b = 40 ) )

#Serialize to JSON

json_str = JsonSerializer.dumps(example_0)
print(json_str)
#{
#  "x": 10,
#  "y": 20,
#  "nested": {
#    "a": 30,
#    "b": 40
#  }
#}

# Deserialize from JSON
example_1 = JsonSerializer.loads(json_str, ExampleRec)
example_1.x += 1
example_1.y += 1
example_1.nested.a += 1
example_1.nested.b += 1

json_str = JsonSerializer.dumps(example_1)
print(json_str)
#{
#  "x": 11,
#  "y": 21,
#  "nested": {
#    "a": 31,
#    "b": 41
#  }
#}

使用json模块(Python 2.6新增)或几乎总是安装的simplejson模块。

你可以使用

x = Map(json.loads(response))
x.__class__ = MyClass

在哪里

class Map(dict):
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self[k] = v
                    if isinstance(v, dict):
                        self[k] = Map(v)

        if kwargs:
            # for python 3 use kwargs.items()
            for k, v in kwargs.iteritems():
                self[k] = v
                if isinstance(v, dict):
                    self[k] = Map(v)

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

对于通用的、经得起未来考验的解决方案。