我想将JSON数据转换为Python对象。
我从Facebook API收到JSON数据对象,我想将其存储在数据库中。
我的当前视图在Django (Python)(请求。POST包含JSON):
response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()
这很好,但是如何处理复杂的JSON数据对象呢?
如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?
你可以试试这个:
class User(object):
def __init__(self, name, username):
self.name = name
self.username = username
import json
j = json.loads(your_json)
u = User(**j)
只需创建一个新对象,并将参数作为映射传递。
你也可以有一个带有对象的JSON:
import json
class Address(object):
def __init__(self, street, number):
self.street = street
self.number = number
def __str__(self):
return "{0} {1}".format(self.street, self.number)
class User(object):
def __init__(self, name, address):
self.name = name
self.address = Address(**address)
def __str__(self):
return "{0} ,{1}".format(self.name, self.address)
if __name__ == '__main__':
js = '''{"name":"Cristian", "address":{"street":"Sesame","number":122}}'''
j = json.loads(js)
print(j)
u = User(**j)
print(u)
如果你正在寻找将JSON或任何复杂字典的类型安全反序列化到python类中,我强烈推荐python 3.7+的pydantic。它不仅有一个简洁的API(不需要编写“helper”样板),可以与Python数据类集成,而且具有复杂和嵌套数据结构的静态和运行时类型验证。
使用示例:
from pydantic import BaseModel
from datetime import datetime
class Item(BaseModel):
field1: str | int # union
field2: int | None = None # optional
field3: str = 'default' # default values
class User(BaseModel):
name: str | None = None
username: str
created: datetime # default type converters
items: list[Item] = [] # nested complex types
data = {
'name': 'Jane Doe',
'username': 'user1',
'created': '2020-12-31T23:59:00+10:00',
'items': [
{'field1': 1, 'field2': 2},
{'field1': 'b'},
{'field1': 'c', 'field3': 'override'}
]
}
user: User = User(**data)
要了解更多细节和特性,请查看文档中的pydantic的rational部分。
在寻找解决方案时,我偶然发现了这个博客:https://blog.mosthege.net/2016/11/12/json-deserialization-of-nested-objects/
它使用与前面回答中相同的技术,但使用了装饰器。
我发现另一件有用的事情是,它在反序列化结束时返回一个类型化对象
class JsonConvert(object):
class_mappings = {}
@classmethod
def class_mapper(cls, d):
for keys, cls in clsself.mappings.items():
if keys.issuperset(d.keys()): # are all required arguments present?
return cls(**d)
else:
# Raise exception instead of silently returning None
raise ValueError('Unable to find a matching class for object: {!s}'.format(d))
@classmethod
def complex_handler(cls, Obj):
if hasattr(Obj, '__dict__'):
return Obj.__dict__
else:
raise TypeError('Object of type %s with value of %s is not JSON serializable' % (type(Obj), repr(Obj)))
@classmethod
def register(cls, claz):
clsself.mappings[frozenset(tuple([attr for attr,val in cls().__dict__.items()]))] = cls
return cls
@classmethod
def to_json(cls, obj):
return json.dumps(obj.__dict__, default=cls.complex_handler, indent=4)
@classmethod
def from_json(cls, json_str):
return json.loads(json_str, object_hook=cls.class_mapper)
用法:
@JsonConvert.register
class Employee(object):
def __init__(self, Name:int=None, Age:int=None):
self.Name = Name
self.Age = Age
return
@JsonConvert.register
class Company(object):
def __init__(self, Name:str="", Employees:[Employee]=None):
self.Name = Name
self.Employees = [] if Employees is None else Employees
return
company = Company("Contonso")
company.Employees.append(Employee("Werner", 38))
company.Employees.append(Employee("Mary"))
as_json = JsonConvert.to_json(company)
from_json = JsonConvert.from_json(as_json)
as_json_from_json = JsonConvert.to_json(from_json)
assert(as_json_from_json == as_json)
print(as_json_from_json)
如果你使用的是Python 3.5+,你可以使用json来序列化和反序列化到普通的旧Python对象:
import jsons
response = request.POST
# You'll need your class attributes to match your dict keys, so in your case do:
response['id'] = response.pop('user_id')
# Then you can load that dict into your class:
user = jsons.load(response, FbApiUser)
user.save()
你也可以让FbApiUser从jsons继承。JsonSerializable更优雅:
user = FbApiUser.from_json(response)
如果你的类由Python默认类型组成,比如字符串、整数、列表、日期时间等,这些例子就可以工作。不过,jsons lib需要自定义类型的类型提示。
这不是代码高尔夫,但这里是我使用类型的最短技巧。SimpleNamespace作为JSON对象的容器。
与namedtuple解决方案相比,它是:
可能更快/更小,因为它没有为每个对象创建一个类
更短的
没有重命名选项,对于不是有效标识符的键可能有相同的限制(在幕后使用setattr)
例子:
from __future__ import print_function
import json
try:
from types import SimpleNamespace as Namespace
except ImportError:
# Python 2.x fallback
from argparse import Namespace
data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'
x = json.loads(data, object_hook=lambda d: Namespace(**d))
print (x.name, x.hometown.name, x.hometown.id)