我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

这似乎是一个XY问题(问A实际问题在哪里B)。

问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?

使用抢

from glom import glom

# Basic deep get

data = {'a': {'b': {'c': 'd'}}}

print(glom(data, 'a.b.c'))

它还将处理列表项:

我已经对一个简单的实现进行了基准测试:

def extract(J, levels):
    # Twice as fast as using glom
    for level in levels.split('.'):
        J = J[int(level) if level.isnumeric() else level]
    return J

... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。

它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'

编辑:

另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:

class Ob:
    def __init__(self, J):
        self.J = J

    def __getitem__(self, index):
        return Ob(self.J[index])

    def __getattr__(self, attr):
        value = self.J.get(attr, None)
        return Ob(value) if type(value) in (list, dict) else value

现在你可以做:

ob = Ob(J)

# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf

# for intermediate values
ob.foo.bar[42].quux.J

这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!

其他回答

我正在寻找一个与recordclass一起工作的解决方案。RecordClass,支持嵌套对象,可用于json序列化和json反序列化。

扩展DS的答案,扩展BeneStr的解决方案,我想出了以下似乎有效的方法:

代码:

import json
import recordclass

class NestedRec(recordclass.RecordClass):
    a : int = 0
    b : int = 0

class ExampleRec(recordclass.RecordClass):
    x : int       = None
    y : int       = None
    nested : NestedRec = NestedRec()

class JsonSerializer:
    @staticmethod
    def dumps(obj, ensure_ascii=True, indent=None, sort_keys=False):
        return json.dumps(obj, default=JsonSerializer.__obj_to_dict, ensure_ascii=ensure_ascii, indent=indent, sort_keys=sort_keys)

    @staticmethod
    def loads(s, klass):
        return JsonSerializer.__dict_to_obj(klass, json.loads(s))

    @staticmethod
    def __obj_to_dict(obj):
        if hasattr(obj, "_asdict"):
            return obj._asdict()
        else:
            return json.JSONEncoder().default(obj)

    @staticmethod
    def __dict_to_obj(klass, s_dict):
        kwargs = {
            key : JsonSerializer.__dict_to_obj(cls, s_dict[key]) if hasattr(cls,'_asdict') else s_dict[key] \
                for key,cls in klass.__annotations__.items() \
                    if s_dict is not None and key in s_dict
        }
        return klass(**kwargs)

用法:

example_0 = ExampleRec(x = 10, y = 20, nested = NestedRec( a = 30, b = 40 ) )

#Serialize to JSON

json_str = JsonSerializer.dumps(example_0)
print(json_str)
#{
#  "x": 10,
#  "y": 20,
#  "nested": {
#    "a": 30,
#    "b": 40
#  }
#}

# Deserialize from JSON
example_1 = JsonSerializer.loads(json_str, ExampleRec)
example_1.x += 1
example_1.y += 1
example_1.nested.a += 1
example_1.nested.b += 1

json_str = JsonSerializer.dumps(example_1)
print(json_str)
#{
#  "x": 11,
#  "y": 21,
#  "nested": {
#    "a": 31,
#    "b": 41
#  }
#}

如果你使用的是Python 3.5+,你可以使用json来序列化和反序列化到普通的旧Python对象:

import jsons

response = request.POST

# You'll need your class attributes to match your dict keys, so in your case do:
response['id'] = response.pop('user_id')

# Then you can load that dict into your class:
user = jsons.load(response, FbApiUser)

user.save()

你也可以让FbApiUser从jsons继承。JsonSerializable更优雅:

user = FbApiUser.from_json(response)

如果你的类由Python默认类型组成,比如字符串、整数、列表、日期时间等,这些例子就可以工作。不过,jsons lib需要自定义类型的类型提示。

Dacite也可能是您的解决方案,它支持以下功能:

嵌套结构 (基本)类型检查 可选字段(即typing.Optional) 工会 向前引用 集合 自定义类型钩子

https://pypi.org/project/dacite/

from dataclasses import dataclass
from dacite import from_dict


@dataclass
class User:
    name: str
    age: int
    is_active: bool


data = {
    'name': 'John',
    'age': 30,
    'is_active': True,
}

user = from_dict(data_class=User, data=data)

assert user == User(name='John', age=30, is_active=True)

这不是代码高尔夫,但这里是我使用类型的最短技巧。SimpleNamespace作为JSON对象的容器。

与namedtuple解决方案相比,它是:

可能更快/更小,因为它没有为每个对象创建一个类 更短的 没有重命名选项,对于不是有效标识符的键可能有相同的限制(在幕后使用setattr)

例子:

from __future__ import print_function
import json

try:
    from types import SimpleNamespace as Namespace
except ImportError:
    # Python 2.x fallback
    from argparse import Namespace

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

x = json.loads(data, object_hook=lambda d: Namespace(**d))

print (x.name, x.hometown.name, x.hometown.id)

JSON到python对象

下面的代码递归地使用对象键创建动态属性。

JSON对象- fb_data.json:

{
    "name": "John Smith",
    "hometown": {
        "name": "New York",
        "id": 123
    },
    "list": [
        "a",
        "b",
        "c",
        1,
        {
            "key": 1
        }
    ],
    "object": {
        "key": {
            "key": 1
        }
    }
}

在转换中我们有三种情况:

列表 Dicts(新对象) Bool, int, float和STR

import json


class AppConfiguration(object):
    def __init__(self, data=None):
        if data is None:
            with open("fb_data.json") as fh:
                data = json.loads(fh.read())
        else:
            data = dict(data)

        for key, val in data.items():
            setattr(self, key, self.compute_attr_value(val))

    def compute_attr_value(self, value):
        if isinstance(value, list):
            return [self.compute_attr_value(x) for x in value]
        elif isinstance(value, dict):
            return AppConfiguration(value)
        else:
            return value


if __name__ == "__main__":
    instance = AppConfiguration()

    print(instance.name)
    print(instance.hometown.name)
    print(instance.hometown.id)
    print(instance.list[4].key)
    print(instance.object.key.key)

键值对是属性-对象。

输出:

John Smith
New York
123
1
1

将JSON作为代码粘贴

支持TypeScript、Python、Go、Ruby、c#、Java、Swift、Rust、Kotlin、c++、Flow、Objective-C、JavaScript、Elm、JSON Schema。

从JSON、JSON Schema和TypeScript中交互式地生成类型和(反)序列化代码 将JSON/JSON Schema/TypeScript作为代码粘贴

quicktype从示例JSON数据中推断类型,然后输出强类型模型和序列化器,以便用所需的编程语言处理这些数据。

输出:

# Generated by https://quicktype.io
#
# To change quicktype's target language, run command:
#
#   "Set quicktype target language"

from typing import List, Union


class Hometown:
    name: str
    id: int

    def __init__(self, name: str, id: int) -> None:
        self.name = name
        self.id = id


class Key:
    key: int

    def __init__(self, key: int) -> None:
        self.key = key


class Object:
    key: Key

    def __init__(self, key: Key) -> None:
        self.key = key


class FbData:
    name: str
    hometown: Hometown
    list: List[Union[Key, int, str]]
    object: Object

    def __init__(self, name: str, hometown: Hometown, list: List[Union[Key, int, str]], object: Object) -> None:
        self.name = name
        self.hometown = hometown
        self.list = list
        self.object = object

这个扩展可以在Visual Studio代码市场中免费获得。