我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

这里给出的答案没有返回正确的对象类型,因此我在下面创建了这些方法。如果你试图向给定JSON中不存在的类中添加更多字段,它们也会失败:

def dict_to_class(class_name: Any, dictionary: dict) -> Any:
    instance = class_name()
    for key in dictionary.keys():
        setattr(instance, key, dictionary[key])
    return instance


def json_to_class(class_name: Any, json_string: str) -> Any:
    dict_object = json.loads(json_string)
    return dict_to_class(class_name, dict_object)

其他回答

我已经编写了一个名为any2any的小型(反)序列化框架,它可以帮助在两种Python类型之间进行复杂的转换。

在您的情况下,我猜您想从字典(通过json.loads获得)转换为复杂的对象response.education;Response.name,具有嵌套结构response.education.id,等等… 这就是这个框架的用途。文档还不是很好,但是通过使用any2any.simple。MappingToObject,你应该可以很容易地做到。如果需要帮助,请询问。

你可以使用

x = Map(json.loads(response))
x.__class__ = MyClass

在哪里

class Map(dict):
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self[k] = v
                    if isinstance(v, dict):
                        self[k] = Map(v)

        if kwargs:
            # for python 3 use kwargs.items()
            for k, v in kwargs.iteritems():
                self[k] = v
                if isinstance(v, dict):
                    self[k] = Map(v)

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

对于通用的、经得起未来考验的解决方案。

Dacite也可能是您的解决方案,它支持以下功能:

嵌套结构 (基本)类型检查 可选字段(即typing.Optional) 工会 向前引用 集合 自定义类型钩子

https://pypi.org/project/dacite/

from dataclasses import dataclass
from dacite import from_dict


@dataclass
class User:
    name: str
    age: int
    is_active: bool


data = {
    'name': 'John',
    'age': 30,
    'is_active': True,
}

user = from_dict(data_class=User, data=data)

assert user == User(name='John', age=30, is_active=True)

如果你正在寻找将JSON或任何复杂字典的类型安全反序列化到python类中,我强烈推荐python 3.7+的pydantic。它不仅有一个简洁的API(不需要编写“helper”样板),可以与Python数据类集成,而且具有复杂和嵌套数据结构的静态和运行时类型验证。

使用示例:

from pydantic import BaseModel
from datetime import datetime

class Item(BaseModel):
    field1: str | int           # union
    field2: int | None = None   # optional
    field3: str = 'default'     # default values

class User(BaseModel):
    name: str | None = None
    username: str
    created: datetime           # default type converters
    items: list[Item] = []      # nested complex types

data = {
    'name': 'Jane Doe',
    'username': 'user1',
    'created': '2020-12-31T23:59:00+10:00',
    'items': [
        {'field1': 1, 'field2': 2},
        {'field1': 'b'},
        {'field1': 'c', 'field3': 'override'}
    ]
}

user: User = User(**data)

要了解更多细节和特性,请查看文档中的pydantic的rational部分。

class SimpleClass:
    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            if type(v) is dict:
                setattr(self, k, SimpleClass(**v))
            else:
                setattr(self, k, v)


json_dict = {'name': 'jane doe', 'username': 'jane', 'test': {'foo': 1}}

class_instance = SimpleClass(**json_dict)

print(class_instance.name, class_instance.test.foo)
print(vars(class_instance))