我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

数据类向导是一种现代的选项,可以类似地为您工作。它支持自动键大小写转换,如camelCase或TitleCase,这两者在API响应中都很常见。

当将实例转储到dict/JSON时,默认的键转换是camelCase,但这可以很容易地使用主数据类上提供的Meta配置来覆盖。

https://pypi.org/project/dataclass-wizard/

from dataclasses import dataclass

from dataclass_wizard import fromdict, asdict


@dataclass
class User:
    name: str
    age: int
    is_active: bool


data = {
    'name': 'John',
    'age': 30,
    'isActive': True,
}

user = fromdict(User, data)
assert user == User(name='John', age=30, is_active=True)

json_dict = asdict(user)
assert json_dict == {'name': 'John', 'age': 30, 'isActive': True}

设置元配置的例子,当序列化为dict/JSON时,将字段转换为lisp-case:

DumpMeta(key_transform='LISP').bind_to(User)

其他回答

class SimpleClass:
    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            if type(v) is dict:
                setattr(self, k, SimpleClass(**v))
            else:
                setattr(self, k, v)


json_dict = {'name': 'jane doe', 'username': 'jane', 'test': {'foo': 1}}

class_instance = SimpleClass(**json_dict)

print(class_instance.name, class_instance.test.foo)
print(vars(class_instance))

这不是代码高尔夫,但这里是我使用类型的最短技巧。SimpleNamespace作为JSON对象的容器。

与namedtuple解决方案相比,它是:

可能更快/更小,因为它没有为每个对象创建一个类 更短的 没有重命名选项,对于不是有效标识符的键可能有相同的限制(在幕后使用setattr)

例子:

from __future__ import print_function
import json

try:
    from types import SimpleNamespace as Namespace
except ImportError:
    # Python 2.x fallback
    from argparse import Namespace

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

x = json.loads(data, object_hook=lambda d: Namespace(**d))

print (x.name, x.hometown.name, x.hometown.id)

数据类向导是一种现代的选项,可以类似地为您工作。它支持自动键大小写转换,如camelCase或TitleCase,这两者在API响应中都很常见。

当将实例转储到dict/JSON时,默认的键转换是camelCase,但这可以很容易地使用主数据类上提供的Meta配置来覆盖。

https://pypi.org/project/dataclass-wizard/

from dataclasses import dataclass

from dataclass_wizard import fromdict, asdict


@dataclass
class User:
    name: str
    age: int
    is_active: bool


data = {
    'name': 'John',
    'age': 30,
    'isActive': True,
}

user = fromdict(User, data)
assert user == User(name='John', age=30, is_active=True)

json_dict = asdict(user)
assert json_dict == {'name': 'John', 'age': 30, 'isActive': True}

设置元配置的例子,当序列化为dict/JSON时,将字段转换为lisp-case:

DumpMeta(key_transform='LISP').bind_to(User)

如果你正在使用python 3.6+,你可以使用棉花糖-数据类。与上面列出的所有解决方案相反,它既简单,又类型安全:

from marshmallow_dataclass import dataclass

@dataclass
class User:
    name: str

user = User.Schema().load({"name": "Ramirez"})

查看JSON模块文档中的专门化JSON对象解码一节。您可以使用它将JSON对象解码为特定的Python类型。

这里有一个例子:

class User(object):
    def __init__(self, name, username):
        self.name = name
        self.username = username

import json
def object_decoder(obj):
    if '__type__' in obj and obj['__type__'] == 'User':
        return User(obj['name'], obj['username'])
    return obj

json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}',
           object_hook=object_decoder)

print type(User)  # -> <type 'type'>

更新

如果你想通过json模块访问字典中的数据,可以这样做:

user = json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}')
print user['name']
print user['username']

就像一本普通的字典。