前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

您还可以创建一个大小为last_element_in_the_existing_array + 1的布尔数组。

在for循环中,标记现有数组中存在的所有元素为true。

在另一个for循环中,打印包含false的元素的索引,即缺失的元素。

时间复杂度:O(last_element_in_the_existing_array)

空间复杂度:O(array.length)

其他回答

对于不同的k值,方法将是不同的,所以不会有一个关于k的通用答案。例如,对于k=1,可以利用自然数和,但对于k= n/2,必须使用某种bitset。对于k=n-1也是一样,我们可以简单地将袋子里唯一的数字与其他数字进行比较。

我会用另一种方法来回答这个问题,询问面试官关于他试图解决的更大问题的更多细节。根据问题和围绕它的需求,显而易见的基于集的解决方案可能是正确的,而生成一个列表然后从中挑选的方法可能不是。

For example, it might be that the interviewer is going to dispatch n messages and needs to know the k that didn't result in a reply and needs to know it in as little wall clock time as possible after the n-kth reply arrives. Let's also say that the message channel's nature is such that even running at full bore, there's enough time to do some processing between messages without having any impact on how long it takes to produce the end result after the last reply arrives. That time can be put to use inserting some identifying facet of each sent message into a set and deleting it as each corresponding reply arrives. Once the last reply has arrived, the only thing to be done is to remove its identifier from the set, which in typical implementations takes O(log k+1). After that, the set contains the list of k missing elements and there's no additional processing to be done.

这当然不是批处理预先生成的数字袋的最快方法,因为整个过程运行O((log 1 + log 2 +…)+ log n) + (log n + log n-1 +…+ log k))。但它确实适用于任何k值(即使它事先不知道),在上面的例子中,它的应用方式使最关键的区间最小化。

还有一种方法是使用残差图滤波。

假设数字1到4少了3。二进制表示如下:

1 = 001b, 2 = 010b, 3 = 011b, 4 = 100b

我可以创建一个像下面这样的流程图。

                   1
             1 -------------> 1
             |                | 
      2      |     1          |
0 ---------> 1 ----------> 0  |
|                          |  |
|     1            1       |  |
0 ---------> 0 ----------> 0  |
             |                |
      1      |      1         |
1 ---------> 0 -------------> 1

注意,流图包含x个节点,而x是比特数。最大边数是(2*x)-2。

因此,对于32位整数,它将占用O(32)空间或O(1)空间。

现在如果我从1,2,4开始移除每个数的容量那么我就剩下了一个残差图。

0 ----------> 1 ---------> 1

最后我将像下面这样运行一个循环,

 result = []
 for x in range(1,n):
     exists_path_in_residual_graph(x)
     result.append(x)

现在的结果是结果中包含的数字也没有缺失(假阳性)。但是当有k个缺失元素时,k <=(结果的大小)<= n。

我将最后一次检查给定的列表,以标记缺少或没有的结果。

所以时间复杂度是O(n)

最后,可以通过选取节点00、01、11、10而不是0和1来减少误报的数量(以及所需的空间)。

假设一个ArrayList对象(myList)被这些数字填充,其中x和y两个数字缺失。所以可能的解决方案是:

int k = 1;
        while (k < 100) {
            if (!myList.contains(k)) {
                System.out.println("Missing No:" + k);
            }
            k++;
        }

我们可以用O(log n)来做Q1和Q2。

假设我们的存储芯片由n个试管阵列组成。试管中的数字x用x毫升化学液体表示。

假设我们的处理器是一束激光。当我们点燃激光时,它垂直穿过所有的管子。每次它通过化学液体,光度就降低1。在某毫升处通过光是O(1)的运算。

现在如果我们在试管的中间点上激光就会得到光度的输出

等于预先计算的值(当没有数字缺失时计算),则缺失的数字大于n/2。 如果我们的输出更小,那么至少有一个小于n/2的数字缺失。我们也可以检查光度是否降低了1或2。如果它减少1,那么一个缺失数小于n/2,另一个大于n/2。如果它减2,那么两个数都小于n/2。

我们可以一次又一次地重复上述过程,缩小我们的问题域。在每一步中,我们将定义域缩小一半。最后我们可以得到结果。

值得一提的是并行算法(因为它们很有趣),

sorting by some parallel algorithm, for example, parallel merge can be done in O(log^3 n) time. And then the missing number can be found by binary search in O(log n) time. Theoretically, if we have n processors then each process can check one of the inputs and set some flag that identifies the number(conveniently in an array). And in the next step each process can check each flag and finally output the number that is not flagged. The whole process will take O(1) time. It has additional O(n) space/memory requirement.

请注意,如上所述,上面提供的两个并行算法可能需要额外的空间。