前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

你可以解出Q2如果你有两个链表的和和和两个链表的乘积。

(l1为原始列表,l2为修改后的列表)

d = sum(l1) - sum(l2)
m = mul(l1) / mul(l2)

我们可以优化它,因为等差级数的和是第一项和最后一项的平均值的n倍:

n = len(l1)
d = (n/2)*(n+1) - sum(l2)

现在我们知道(如果a和b是被移除的数字):

a + b = d
a * b = m

所以我们可以重新排列为:

a = s - b
b * (s - b) = m

然后乘出来:

-b^2 + s*b = m

然后重新排列,使右边为零

-b^2 + s*b - m = 0

然后用二次公式求解:

b = (-s + sqrt(s^2 - (4*-1*-m)))/-2
a = s - b

Python 3示例代码:

from functools import reduce
import operator
import math
x = list(range(1,21))
sx = (len(x)/2)*(len(x)+1)
x.remove(15)
x.remove(5)
mul = lambda l: reduce(operator.mul,l)
s = sx - sum(x)
m = mul(range(1,21)) / mul(x)
b = (-s + math.sqrt(s**2 - (-4*(-m))))/-2
a = s - b
print(a,b) #15,5

我不知道根号,减法和求和函数的复杂性,所以我无法计算出这个解决方案的复杂性(如果有人知道,请在下面评论)。

其他回答

我们可以通过把数字本身和这些数字的平方相加来解Q2。

我们可以把问题简化为

k1 + k2 = x
k1^2 + k2^2 = y

其中x和y表示和低于期望值的程度。

代换给我们:

(x-k2)^2 + k2^2 = y

然后我们可以解出缺失的数。

您还可以创建一个大小为last_element_in_the_existing_array + 1的布尔数组。

在for循环中,标记现有数组中存在的所有元素为true。

在另一个for循环中,打印包含false的元素的索引,即缺失的元素。

时间复杂度:O(last_element_in_the_existing_array)

空间复杂度:O(array.length)

还有一种方法是使用残差图滤波。

假设数字1到4少了3。二进制表示如下:

1 = 001b, 2 = 010b, 3 = 011b, 4 = 100b

我可以创建一个像下面这样的流程图。

                   1
             1 -------------> 1
             |                | 
      2      |     1          |
0 ---------> 1 ----------> 0  |
|                          |  |
|     1            1       |  |
0 ---------> 0 ----------> 0  |
             |                |
      1      |      1         |
1 ---------> 0 -------------> 1

注意,流图包含x个节点,而x是比特数。最大边数是(2*x)-2。

因此,对于32位整数,它将占用O(32)空间或O(1)空间。

现在如果我从1,2,4开始移除每个数的容量那么我就剩下了一个残差图。

0 ----------> 1 ---------> 1

最后我将像下面这样运行一个循环,

 result = []
 for x in range(1,n):
     exists_path_in_residual_graph(x)
     result.append(x)

现在的结果是结果中包含的数字也没有缺失(假阳性)。但是当有k个缺失元素时,k <=(结果的大小)<= n。

我将最后一次检查给定的列表,以标记缺少或没有的结果。

所以时间复杂度是O(n)

最后,可以通过选取节点00、01、11、10而不是0和1来减少误报的数量(以及所需的空间)。

谢谢你这个有趣的问题:

因为你让我想起了牛顿的工作,它真的可以解决这个问题

请参考牛顿恒等式

As变量的数量=方程的数量(必须为一致性)

我认为,对于这个问题,我们应该提高袋数的幂,以便创建不同的方程。

我不知道,但是,我相信如果有一个函数,比如f,我们要加上f(xi)

x1+x2+…+ xk = z1

x12 + x22 + ... + xk2 = z2

............

............

............

x1k + x2k + ... + xkk = XP

休息是一个不确定时间和空间复杂性的数学工作,但牛顿恒等式肯定会发挥重要作用。

我们不能用集合理论吗 .difference_update()或在这个问题方法中是否有线性代数的机会?

正如@j_random_hacker所指出的,这与在O(n)个时间和O(1)个空间中寻找重复项非常相似,我的答案在这里也适用。

假设“袋子”由一个大小为N - k的基于1的数组a[]表示,我们可以在O(N)个时间和O(k)个额外空间内求解Qk。

首先,我们将数组A[]扩展k个元素,使它现在的大小为n,这是O(k)个额外空间。然后我们运行以下伪代码算法:

for i := n - k + 1 to n
    A[i] := A[1]
end for

for i := 1 to n - k
    while A[A[i]] != A[i] 
        swap(A[i], A[A[i]])
    end while
end for

for i := 1 to n
    if A[i] != i then 
        print i
    end if
end for

第一个循环初始化k个额外的条目,使其与数组中的第一个条目相同(这只是我们知道数组中已经存在的一个方便的值——在这一步之后,大小为N-k的初始数组中缺失的任何条目在扩展数组中仍然缺失)。

第二个循环排列扩展数组,如果元素x至少出现一次,那么其中一个元素将位于位置A[x]。

注意,尽管它有一个嵌套循环,但它仍然在O(N)时间内运行——只有当有一个i使a [i] != i时才会发生交换,并且每次交换设置至少一个元素使a [i] == i,而以前不是这样的。这意味着交换的总数(因此while循环体的执行总数)最多为N-1。

第三个循环打印数组i中没有被值i占用的索引——这意味着i一定是缺失的。