最近我一直在iPhone上玩一款名为《Scramble》的游戏。有些人可能知道这个游戏叫拼字游戏。从本质上讲,当游戏开始时,你会得到一个字母矩阵:

F X I E
A M L O
E W B X
A S T U

The goal of the game is to find as many words as you can that can be formed by chaining letters together. You can start with any letter, and all the letters that surround it are fair game, and then once you move on to the next letter, all the letters that surround that letter are fair game, except for any previously used letters. So in the grid above, for example, I could come up with the words LOB, TUX, SEA, FAME, etc. Words must be at least 3 characters, and no more than NxN characters, which would be 16 in this game but can vary in some implementations. While this game is fun and addictive, I am apparently not very good at it and I wanted to cheat a little bit by making a program that would give me the best possible words (the longer the word the more points you get).

(来源:boggled.org)

不幸的是,我不太擅长算法或它们的效率等等。我的第一次尝试使用一个像这样的字典(约2.3MB),并进行线性搜索,试图匹配字典条目的组合。这需要花费很长时间来找到可能的单词,因为你每轮只有2分钟的时间,这是不够的。

我很有兴趣看看是否有任何Stackoverflowers可以提出更有效的解决方案。我主要是在寻找使用三大p的解决方案:Python、PHP和Perl,尽管任何使用Java或c++的东西也很酷,因为速度是至关重要的。

目前的解决方案:

Adam Rosenfield, Python, ~20岁 John Fouhy, Python, ~3秒 Kent Fredric, Perl, ~1s Darius Bacon, Python, ~1s rvarcher, VB。净,~ 1 s Paolo Bergantino, PHP(实时链接),~5s(本地~2s)


当前回答

如何简单的排序和使用字典中的二进制搜索?

在0.35秒内返回整个列表,并可以进一步优化(例如删除含有未使用字母的单词等)。

from bisect import bisect_left

f = open("dict.txt")
D.extend([line.strip() for line in f.readlines()])
D = sorted(D)

def neibs(M,x,y):
    n = len(M)
    for i in xrange(-1,2):
        for j in xrange(-1,2):
            if (i == 0 and j == 0) or (x + i < 0 or x + i >= n or y + j < 0 or y + j >= n):
                continue
            yield (x + i, y + j)

def findWords(M,D,x,y,prefix):
    prefix = prefix + M[x][y]

    # find word in dict by binary search
    found = bisect_left(D,prefix)

    # if found then yield
    if D[found] == prefix: 
        yield prefix

    # if what we found is not even a prefix then return
    # (there is no point in going further)
    if len(D[found]) < len(prefix) or D[found][:len(prefix)] != prefix:
        return

    # recourse
    for neib in neibs(M,x,y):
        for word in findWords(M,D,neib[0], neib[1], prefix):
            yield word

def solve(M,D):
    # check each starting point
    for x in xrange(0,len(M)):
        for y in xrange(0,len(M)):
            for word in findWords(M,D,x,y,""):
                yield word

grid = "fxie amlo ewbx astu".split()
print [x for x in solve(grid,D)]

其他回答

我在Java上的尝试。读取文件和构建trie大约需要2秒,解决谜题大约需要50毫秒。我用了问题中链接的字典(里面有几个我不知道在英语中存在的单词,比如fae, ima)

0 [main] INFO gineer.bogglesolver.util.Util  - Reading the dictionary
2234 [main] INFO gineer.bogglesolver.util.Util  - Finish reading the dictionary
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAM
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAME
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAMBLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: FAE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: IMA
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELM
2234 [main] INFO gineer.bogglesolver.Solver  - Found: ELB
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXIL
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXILE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AXLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMIL
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMLI
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AME
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMBLE
2234 [main] INFO gineer.bogglesolver.Solver  - Found: AMBO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MIX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MILE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MILO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MAW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MEW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MEWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MESA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: MWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMBO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LIMBU
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LEI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LEO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LOB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: LOX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OIME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: OLM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMBOLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EMBOX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: EAST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAF
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAME
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAMBLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAS
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WASE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: WAST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BLEO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BLO
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BOIL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BOLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: BUT
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AES
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWL
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AWEST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: ASE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: ASEM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: AST
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEAX
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEMI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEMBLE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SEA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWAM
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWAMI
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SAW
2250 [main] INFO gineer.bogglesolver.Solver  - Found: SAWT
2250 [main] INFO gineer.bogglesolver.Solver  - Found: STU
2250 [main] INFO gineer.bogglesolver.Solver  - Found: STUB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWA
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAE
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TWAS
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TUB
2250 [main] INFO gineer.bogglesolver.Solver  - Found: TUX

源代码由6个类组成。我将把它们贴在下面(如果这不是StackOverflow的正确做法,请告诉我)。

gineer.bogglesolver.Main

package gineer.bogglesolver;

import org.apache.log4j.BasicConfigurator;
import org.apache.log4j.Logger;

public class Main
{
    private final static Logger logger = Logger.getLogger(Main.class);

    public static void main(String[] args)
    {
        BasicConfigurator.configure();

        Solver solver = new Solver(4,
                        "FXIE" +
                        "AMLO" +
                        "EWBX" +
                        "ASTU");
        solver.solve();

    }
}

gineer.bogglesolver.Solver

package gineer.bogglesolver;

import gineer.bogglesolver.trie.Trie;
import gineer.bogglesolver.util.Constants;
import gineer.bogglesolver.util.Util;
import org.apache.log4j.Logger;

public class Solver
{
    private char[] puzzle;
    private int maxSize;

    private boolean[] used;
    private StringBuilder stringSoFar;

    private boolean[][] matrix;
    private Trie trie;

    private final static Logger logger = Logger.getLogger(Solver.class);

    public Solver(int size, String puzzle)
    {
        trie = Util.getTrie(size);
        matrix = Util.connectivityMatrix(size);

        maxSize = size * size;
        stringSoFar = new StringBuilder(maxSize);
        used = new boolean[maxSize];

        if (puzzle.length() == maxSize)
        {
            this.puzzle = puzzle.toCharArray();
        }
        else
        {
            logger.error("The puzzle size does not match the size specified: " + puzzle.length());
            this.puzzle = puzzle.substring(0, maxSize).toCharArray();
        }
    }

    public void solve()
    {
        for (int i = 0; i < maxSize; i++)
        {
            traverseAt(i);
        }
    }

    private void traverseAt(int origin)
    {
        stringSoFar.append(puzzle[origin]);
        used[origin] = true;

        //Check if we have a valid word
        if ((stringSoFar.length() >= Constants.MINIMUM_WORD_LENGTH) && (trie.containKey(stringSoFar.toString())))
        {
            logger.info("Found: " + stringSoFar.toString());
        }

        //Find where to go next
        for (int destination = 0; destination < maxSize; destination++)
        {
            if (matrix[origin][destination] && !used[destination] && trie.containPrefix(stringSoFar.toString() + puzzle[destination]))
            {
                traverseAt(destination);
            }
        }

        used[origin] = false;
        stringSoFar.deleteCharAt(stringSoFar.length() - 1);
    }

}

gineer.bogglesolver.trie.Node

package gineer.bogglesolver.trie;

import gineer.bogglesolver.util.Constants;

class Node
{
    Node[] children;
    boolean isKey;

    public Node()
    {
        isKey = false;
        children = new Node[Constants.NUMBER_LETTERS_IN_ALPHABET];
    }

    public Node(boolean key)
    {
        isKey = key;
        children = new Node[Constants.NUMBER_LETTERS_IN_ALPHABET];
    }

    /**
     Method to insert a string to Node and its children

     @param key the string to insert (the string is assumed to be uppercase)
     @return true if the node or one of its children is changed, false otherwise
     */
    public boolean insert(String key)
    {
        //If the key is empty, this node is a key
        if (key.length() == 0)
        {
            if (isKey)
                return false;
            else
            {
                isKey = true;
                return true;
            }
        }
        else
        {//otherwise, insert in one of its child

            int childNodePosition = key.charAt(0) - Constants.LETTER_A;
            if (children[childNodePosition] == null)
            {
                children[childNodePosition] = new Node();
                children[childNodePosition].insert(key.substring(1));
                return true;
            }
            else
            {
                return children[childNodePosition].insert(key.substring(1));
            }
        }
    }

    /**
     Returns whether key is a valid prefix for certain key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell", "hello" return true

     @param prefix the prefix to check
     @return true if the prefix is valid, false otherwise
     */
    public boolean containPrefix(String prefix)
    {
        //If the prefix is empty, return true
        if (prefix.length() == 0)
        {
            return true;
        }
        else
        {//otherwise, check in one of its child
            int childNodePosition = prefix.charAt(0) - Constants.LETTER_A;
            return children[childNodePosition] != null && children[childNodePosition].containPrefix(prefix.substring(1));
        }
    }

    /**
     Returns whether key is a valid key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell" return false

     @param key the key to check
     @return true if the key is valid, false otherwise
     */
    public boolean containKey(String key)
    {
        //If the prefix is empty, return true
        if (key.length() == 0)
        {
            return isKey;
        }
        else
        {//otherwise, check in one of its child
            int childNodePosition = key.charAt(0) - Constants.LETTER_A;
            return children[childNodePosition] != null && children[childNodePosition].containKey(key.substring(1));
        }
    }

    public boolean isKey()
    {
        return isKey;
    }

    public void setKey(boolean key)
    {
        isKey = key;
    }
}

gineer.bogglesolver.trie.Trie

package gineer.bogglesolver.trie;

public class Trie
{
    Node root;

    public Trie()
    {
        this.root = new Node();
    }

    /**
     Method to insert a string to Node and its children

     @param key the string to insert (the string is assumed to be uppercase)
     @return true if the node or one of its children is changed, false otherwise
     */
    public boolean insert(String key)
    {
        return root.insert(key.toUpperCase());
    }

    /**
     Returns whether key is a valid prefix for certain key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell", "hello" return true

     @param prefix the prefix to check
     @return true if the prefix is valid, false otherwise
     */
    public boolean containPrefix(String prefix)
    {
        return root.containPrefix(prefix.toUpperCase());
    }

    /**
     Returns whether key is a valid key in this trie.
     For example: if key "hello" is in this trie, tests with all prefixes "hel", "hell" return false

     @param key the key to check
     @return true if the key is valid, false otherwise
     */
    public boolean containKey(String key)
    {
        return root.containKey(key.toUpperCase());
    }


}

gineer.bogglesolver.util.Constants

package gineer.bogglesolver.util;

public class Constants
{

    public static final int NUMBER_LETTERS_IN_ALPHABET = 26;
    public static final char LETTER_A = 'A';
    public static final int MINIMUM_WORD_LENGTH = 3;
    public static final int DEFAULT_PUZZLE_SIZE = 4;
}

gineer.bogglesolver.util.Util

package gineer.bogglesolver.util;

import gineer.bogglesolver.trie.Trie;
import org.apache.log4j.Logger;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class Util
{
    private final static Logger logger = Logger.getLogger(Util.class);
    private static Trie trie;
    private static int size = Constants.DEFAULT_PUZZLE_SIZE;

    /**
     Returns the trie built from the dictionary.  The size is used to eliminate words that are too long.

     @param size the size of puzzle.  The maximum lenght of words in the returned trie is (size * size)
     @return the trie that can be used for puzzle of that size
     */
    public static Trie getTrie(int size)
    {
        if ((trie != null) && size == Util.size)
            return trie;

        trie = new Trie();
        Util.size = size;

        logger.info("Reading the dictionary");
        final File file = new File("dictionary.txt");
        try
        {
            Scanner scanner = new Scanner(file);
            final int maxSize = size * size;
            while (scanner.hasNext())
            {
                String line = scanner.nextLine().replaceAll("[^\\p{Alpha}]", "");

                if (line.length() <= maxSize)
                    trie.insert(line);
            }
        }
        catch (FileNotFoundException e)
        {
            logger.error("Cannot open file", e);
        }

        logger.info("Finish reading the dictionary");
        return trie;
    }

    static boolean[] connectivityRow(int x, int y, int size)
    {
        boolean[] squares = new boolean[size * size];
        for (int offsetX = -1; offsetX <= 1; offsetX++)
        {
            for (int offsetY = -1; offsetY <= 1; offsetY++)
            {
                final int calX = x + offsetX;
                final int calY = y + offsetY;
                if ((calX >= 0) && (calX < size) && (calY >= 0) && (calY < size))
                    squares[calY * size + calX] = true;
            }
        }

        squares[y * size + x] = false;//the current x, y is false

        return squares;
    }

    /**
     Returns the matrix of connectivity between two points.  Point i can go to point j iff matrix[i][j] is true
     Square (x, y) is equivalent to point (size * y + x).  For example, square (1,1) is point 5 in a puzzle of size 4

     @param size the size of the puzzle
     @return the connectivity matrix
     */
    public static boolean[][] connectivityMatrix(int size)
    {
        boolean[][] matrix = new boolean[size * size][];
        for (int x = 0; x < size; x++)
        {
            for (int y = 0; y < size; y++)
            {
                matrix[y * size + x] = connectivityRow(x, y, size);
            }
        }
        return matrix;
    }
}

我已经在c#中使用DFA算法解决了这个问题。你可以查看我的代码

https://github.com/attilabicsko/wordshuffler/

除了在矩阵中查找单词外,我的算法还保存单词的实际路径,所以在设计单词查找游戏时,你可以检查在实际路径上是否有单词。

我知道我已经非常晚了,但是我之前用PHP做了一个——只是为了好玩……

http://www.lostsockdesign.com.au/sandbox/boggle/index.php?letters=fxieamloewbxastu 在0.90108秒内找到75个单词(133分)

F……X . .我 .............. E ............... 一个 ...................................... 米 .............................. L ............................ O ............................... E .................... W ............................ B .......................... X 一个 .................. 年代 .................................................. T ................. U…

给出了一些程序实际在做什么的指示-每个字母是它开始查看模式的地方,而每个'。这显示了中国试图走的一条道路。越多越好。“它搜索得越远。

如果你想要密码,请告诉我…这是一个可怕的PHP和HTML的混合体,从来没有想过要看到阳光,所以我不敢在这里张贴:P

你可以把这个问题分成两部分:

某种搜索算法可以在网格中列举出可能的字符串。 一种测试字符串是否是有效单词的方法。

理想情况下,(2)还应该包括一种测试字符串是否是有效单词前缀的方法——这将允许您精简搜索并节省大量时间。

亚当·罗森菲尔德(Adam Rosenfield)的Trie是(2)的一个解决方案。它很优雅,可能是算法专家的首选,但有了现代语言和现代计算机,我们可能会更懒一点。此外,正如Kent所建议的,我们可以通过丢弃网格中没有字母的单词来减少字典的大小。这是一些蟒蛇:

def make_lookups(grid, fn='dict.txt'):
    # Make set of valid characters.
    chars = set()
    for word in grid:
        chars.update(word)

    words = set(x.strip() for x in open(fn) if set(x.strip()) <= chars)
    prefixes = set()
    for w in words:
        for i in range(len(w)+1):
            prefixes.add(w[:i])

    return words, prefixes

哇;常数时间前缀测试。加载你链接的字典需要几秒钟,但只有几秒钟:-)(注意words <= prefixes)

现在,对于第(1)部分,我倾向于用图表来思考。所以我将创建一个像这样的字典:

graph = { (x, y):set([(x0,y0), (x1,y1), (x2,y2)]), }

例如,graph[(x, y)]是你从位置(x, y)可以到达的坐标集。我还将添加一个虚拟节点None,它将连接到所有东西。

构建它有点笨拙,因为有8个可能的位置,你必须做边界检查。下面是一些相应笨拙的python代码:

def make_graph(grid):
    root = None
    graph = { root:set() }
    chardict = { root:'' }

    for i, row in enumerate(grid):
        for j, char in enumerate(row):
            chardict[(i, j)] = char
            node = (i, j)
            children = set()
            graph[node] = children
            graph[root].add(node)
            add_children(node, children, grid)

    return graph, chardict

def add_children(node, children, grid):
    x0, y0 = node
    for i in [-1,0,1]:
        x = x0 + i
        if not (0 <= x < len(grid)):
            continue
        for j in [-1,0,1]:
            y = y0 + j
            if not (0 <= y < len(grid[0])) or (i == j == 0):
                continue

            children.add((x,y))

这段代码还建立了一个字典映射(x,y)到相应的字符。这让我把一个位置列表转换成一个单词:

def to_word(chardict, pos_list):
    return ''.join(chardict[x] for x in pos_list)

最后,我们进行深度优先搜索。基本程序是:

搜索到达一个特定的节点。 检查到目前为止的路径是否可能是单词的一部分。如果不是,就不要进一步探索这个分支。 检查到目前为止的路径是否是一个单词。如果是,则添加到结果列表中。 探索迄今为止所有孩子未走的路。

Python:

def find_words(graph, chardict, position, prefix, results, words, prefixes):
    """ Arguments:
      graph :: mapping (x,y) to set of reachable positions
      chardict :: mapping (x,y) to character
      position :: current position (x,y) -- equals prefix[-1]
      prefix :: list of positions in current string
      results :: set of words found
      words :: set of valid words in the dictionary
      prefixes :: set of valid words or prefixes thereof
    """
    word = to_word(chardict, prefix)

    if word not in prefixes:
        return

    if word in words:
        results.add(word)

    for child in graph[position]:
        if child not in prefix:
            find_words(graph, chardict, child, prefix+[child], results, words, prefixes)

运行代码如下:

grid = ['fxie', 'amlo', 'ewbx', 'astu']
g, c = make_graph(grid)
w, p = make_lookups(grid)
res = set()
find_words(g, c, None, [], res, w, p)

检查保留区,看看答案。下面是为你的例子找到的单词列表,按大小排序:

 ['a', 'b', 'e', 'f', 'i', 'l', 'm', 'o', 's', 't',
 'u', 'w', 'x', 'ae', 'am', 'as', 'aw', 'ax', 'bo',
 'bu', 'ea', 'el', 'em', 'es', 'fa', 'ie', 'io', 'li',
 'lo', 'ma', 'me', 'mi', 'oe', 'ox', 'sa', 'se', 'st',
 'tu', 'ut', 'wa', 'we', 'xi', 'aes', 'ame', 'ami',
 'ase', 'ast', 'awa', 'awe', 'awl', 'blo', 'but', 'elb',
 'elm', 'fae', 'fam', 'lei', 'lie', 'lim', 'lob', 'lox',
 'mae', 'maw', 'mew', 'mil', 'mix', 'oil', 'olm', 'saw',
 'sea', 'sew', 'swa', 'tub', 'tux', 'twa', 'wae', 'was',
 'wax', 'wem', 'ambo', 'amil', 'amli', 'asem', 'axil',
 'axle', 'bleo', 'boil', 'bole', 'east', 'fame', 'limb',
 'lime', 'mesa', 'mewl', 'mile', 'milo', 'oime', 'sawt',
 'seam', 'seax', 'semi', 'stub', 'swam', 'twae', 'twas',
 'wame', 'wase', 'wast', 'weam', 'west', 'amble', 'awest',
 'axile', 'embox', 'limbo', 'limes', 'swami', 'embole',
 'famble', 'semble', 'wamble']

代码需要(字面上的)几秒钟来加载字典,但其余的在我的机器上是立即完成的。

最快的解决方案可能是将字典存储在一个trie中。然后,创建一个三元组队列(x, y, s),其中队列中的每个元素对应于一个可以在网格中拼写的单词的前缀s,结束于位置(x, y)。初始化队列中有N x N个元素(其中N是网格的大小),网格中的每个正方形都有一个元素。然后,算法进行如下:

While the queue is not empty:
  Dequeue a triple (x, y, s)
  For each square (x', y') with letter c adjacent to (x, y):
    If s+c is a word, output s+c
    If s+c is a prefix of a word, insert (x', y', s+c) into the queue

如果将字典存储在trie中,则可以在常数时间内测试s+c是否是单词或单词的前缀(前提是还在每个队列数据中保留一些额外的元数据,例如指向trie中当前节点的指针),因此此算法的运行时间为O(可拼写的单词数量)。

[编辑]下面是我刚刚编写的Python实现:

#!/usr/bin/python

class TrieNode:
    def __init__(self, parent, value):
        self.parent = parent
        self.children = [None] * 26
        self.isWord = False
        if parent is not None:
            parent.children[ord(value) - 97] = self

def MakeTrie(dictfile):
    dict = open(dictfile)
    root = TrieNode(None, '')
    for word in dict:
        curNode = root
        for letter in word.lower():
            if 97 <= ord(letter) < 123:
                nextNode = curNode.children[ord(letter) - 97]
                if nextNode is None:
                    nextNode = TrieNode(curNode, letter)
                curNode = nextNode
        curNode.isWord = True
    return root

def BoggleWords(grid, dict):
    rows = len(grid)
    cols = len(grid[0])
    queue = []
    words = []
    for y in range(cols):
        for x in range(rows):
            c = grid[y][x]
            node = dict.children[ord(c) - 97]
            if node is not None:
                queue.append((x, y, c, node))
    while queue:
        x, y, s, node = queue[0]
        del queue[0]
        for dx, dy in ((1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1)):
            x2, y2 = x + dx, y + dy
            if 0 <= x2 < cols and 0 <= y2 < rows:
                s2 = s + grid[y2][x2]
                node2 = node.children[ord(grid[y2][x2]) - 97]
                if node2 is not None:
                    if node2.isWord:
                        words.append(s2)
                    queue.append((x2, y2, s2, node2))

    return words

使用示例:

d = MakeTrie('/usr/share/dict/words')
print(BoggleWords(['fxie','amlo','ewbx','astu'], d))

输出:

['fa', 'xi', 'ie', 'io', 'el', 'am', 'ax', 'ae', 'aw', 'mi', 'ma', 'me', 'lo', 'li', 'oe', 'ox', 'em', 'ea', 'ea', 'es', 'wa', 'we', 'wa', 'bo', 'bu', 'as', 'aw', 'ae', 'st', 'se', 'sa', 'tu', 'ut', 'fam', 'fae', 'imi', 'eli', 'elm', 'elb', 'ami', 'ama', 'ame', 'aes', 'awl', 'awa', 'awe', 'awa', 'mix', 'mim', 'mil', 'mam', 'max', 'mae', 'maw', 'mew', 'mem', 'mes', 'lob', 'lox', 'lei', 'leo', 'lie', 'lim', 'oil', 'olm', 'ewe', 'eme', 'wax', 'waf', 'wae', 'waw', 'wem', 'wea', 'wea', 'was', 'waw', 'wae', 'bob', 'blo', 'bub', 'but', 'ast', 'ase', 'asa', 'awl', 'awa', 'awe', 'awa', 'aes', 'swa', 'swa', 'sew', 'sea', 'sea', 'saw', 'tux', 'tub', 'tut', 'twa', 'twa', 'tst', 'utu', 'fama', 'fame', 'ixil', 'imam', 'amli', 'amil', 'ambo', 'axil', 'axle', 'mimi', 'mima', 'mime', 'milo', 'mile', 'mewl', 'mese', 'mesa', 'lolo', 'lobo', 'lima', 'lime', 'limb', 'lile', 'oime', 'oleo', 'olio', 'oboe', 'obol', 'emim', 'emil', 'east', 'ease', 'wame', 'wawa', 'wawa', 'weam', 'west', 'wese', 'wast', 'wase', 'wawa', 'wawa', 'boil', 'bolo', 'bole', 'bobo', 'blob', 'bleo', 'bubo', 'asem', 'stub', 'stut', 'swam', 'semi', 'seme', 'seam', 'seax', 'sasa', 'sawt', 'tutu', 'tuts', 'twae', 'twas', 'twae', 'ilima', 'amble', 'axile', 'awest', 'mamie', 'mambo', 'maxim', 'mease', 'mesem', 'limax', 'limes', 'limbo', 'limbu', 'obole', 'emesa', 'embox', 'awest', 'swami', 'famble', 'mimble', 'maxima', 'embolo', 'embole', 'wamble', 'semese', 'semble', 'sawbwa', 'sawbwa']

Notes: This program doesn't output 1-letter words, or filter by word length at all. That's easy to add but not really relevant to the problem. It also outputs some words multiple times if they can be spelled in multiple ways. If a given word can be spelled in many different ways (worst case: every letter in the grid is the same (e.g. 'A') and a word like 'aaaaaaaaaa' is in your dictionary), then the running time will get horribly exponential. Filtering out duplicates and sorting is trivial to due after the algorithm has finished.