比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

我使用以下函数进行浮点数比较:

bool approximatelyEqual(double a, double b)
{
  return fabs(a - b) <= ((fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * std::numeric_limits<double>::epsilon());
}

其他回答

不幸的是,即使您的“浪费”代码也是不正确的。EPSILON是可以添加到1.0并更改其值的最小值。值1.0非常重要——更大的数字在添加到EPSILON时不会改变。现在,您可以将这个值缩放到您正在比较的数字,以判断它们是否不同。比较两个双精度对象的正确表达式是:

if (fabs(a - b) <= DBL_EPSILON * fmax(fabs(a), fabs(b)))
{
    // ...
}

这是最小值。一般来说,你会想要在计算中考虑噪声,并忽略一些最不重要的位,所以更现实的比较应该是这样的:

if (fabs(a - b) <= 16 * DBL_EPSILON * fmax(fabs(a), fabs(b)))
{
    // ...
}

如果比较性能对您非常重要,并且您知道值的范围,那么您应该使用定点数字。

与epsilon值进行比较是大多数人所做的(甚至是在游戏编程中)。

你应该稍微改变你的实现:

bool AreSame(double a, double b)
{
    return fabs(a - b) < EPSILON;
}

编辑:克里斯特在最近的一篇博客文章中添加了一堆关于这个主题的很棒的信息。享受。

使用任何其他建议都要非常小心。这完全取决于上下文。

我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:

The implicit presumption in an algorithm that if a==b and b==c then a==c. Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS). The use of the same epsilon for both the cosine of angles and the length of lines! Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)

就像我说的,这完全取决于上下文和a和b的预期大小。

顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)

同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。

在https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon上找到了另一个有趣的实现

#include <cmath>
#include <limits>
#include <iomanip>
#include <iostream>
#include <type_traits>
#include <algorithm>



template<class T>
typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type
    almost_equal(T x, T y, int ulp)
{
    // the machine epsilon has to be scaled to the magnitude of the values used
    // and multiplied by the desired precision in ULPs (units in the last place)
    return std::fabs(x-y) <= std::numeric_limits<T>::epsilon() * std::fabs(x+y) * ulp
        // unless the result is subnormal
        || std::fabs(x-y) < std::numeric_limits<T>::min();
}

int main()
{
    double d1 = 0.2;
    double d2 = 1 / std::sqrt(5) / std::sqrt(5);
    std::cout << std::fixed << std::setprecision(20) 
        << "d1=" << d1 << "\nd2=" << d2 << '\n';

    if(d1 == d2)
        std::cout << "d1 == d2\n";
    else
        std::cout << "d1 != d2\n";

    if(almost_equal(d1, d2, 2))
        std::cout << "d1 almost equals d2\n";
    else
        std::cout << "d1 does not almost equal d2\n";
}

比较浮点数取决于上下文。因为即使改变操作的顺序也会产生不同的结果,所以知道你希望这些数字有多“相等”是很重要的。

在研究浮点数比较时,比较Bruce Dawson编写的浮点数是一个很好的开始。

以下定义来自Knuth的《The art of computer programming》:

bool approximatelyEqual(float a, float b, float epsilon)
{
    return fabs(a - b) <= ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool essentiallyEqual(float a, float b, float epsilon)
{
    return fabs(a - b) <= ( (fabs(a) > fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool definitelyGreaterThan(float a, float b, float epsilon)
{
    return (a - b) > ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool definitelyLessThan(float a, float b, float epsilon)
{
    return (b - a) > ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

当然,选择取决于上下文,并决定你想要的数字有多相等。

比较浮点数的另一种方法是查看数字的ULP(最后位置的单位)。虽然没有专门处理比较,但“每个计算机科学家都应该知道浮点数”这篇论文是了解浮点数如何工作以及陷阱是什么,包括什么是ULP的很好的资源。