比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
我使用这个代码。不像上面的答案,这允许一个人
给出一个在代码注释中解释的abs_relative_error。
第一个版本比较复数,使错误
可以用两个矢量之间的夹角来解释
在复平面上具有相同的长度(这给出了一点
洞察力)。然后是2实数的正确公式
数字。
https://github.com/CarloWood/ai-utils/blob/master/almost_equal.h
后者是
template<class T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type
almost_equal(T x, T y, T const abs_relative_error)
{
return 2 * std::abs(x - y) <= abs_relative_error * std::abs(x + y);
}
其中abs_relative_error基本上(两倍)是文献中最接近定义的绝对值:相对错误。但这只是名字的选择。
我认为在复平面中最明显的是。如果|x| = 1, y在x周围形成一个直径为abs_relative_error的圆,则认为两者相等。
意识到这是一个老话题,但这篇文章是我发现的关于比较浮点数的最直接的文章之一,如果你想探索更多,它也有更详细的参考资料,它的主要站点涵盖了处理浮点数的完整范围的问题《浮点指南:比较》。
我们可以在浮点公差中找到一篇更实用的文章,并指出有绝对公差测试,在c++中归结为:
bool absoluteToleranceCompare(double x, double y)
{
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon() ;
}
及相对耐量试验:
bool relativeToleranceCompare(double x, double y)
{
double maxXY = std::max( std::fabs(x) , std::fabs(y) ) ;
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXY ;
}
文章指出,当x和y较大时,绝对检验失败;当x和y较小时,相对检验失败。假设绝对耐受性和相对耐受性是相同的,综合测试将是这样的:
bool combinedToleranceCompare(double x, double y)
{
double maxXYOne = std::max( { 1.0, std::fabs(x) , std::fabs(y) } ) ;
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXYOne ;
}