比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

使用任何其他建议都要非常小心。这完全取决于上下文。

我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:

The implicit presumption in an algorithm that if a==b and b==c then a==c. Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS). The use of the same epsilon for both the cosine of angles and the length of lines! Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)

就像我说的,这完全取决于上下文和a和b的预期大小。

顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)

同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。

其他回答

我对任何涉及浮点减法的答案都非常谨慎(例如,fabs(a-b) < epsilon)。首先,浮点数在更大的量级上变得更稀疏,在足够大的量级上,当间隔大于时,您可能只需要做a == b。其次,减去两个非常接近的浮点数(因为您正在寻找接近相等的浮点数)正是您得到灾难性抵消的方式。

虽然不能移植,但我认为grom的答案在避免这些问题方面做得最好。

在数值软件中,确实有这样的情况,你需要检查两个浮点数是否完全相等。我就一个类似的问题发表了这篇文章

https://stackoverflow.com/a/10973098/1447411

所以你不能说“CompareDoubles1”是错误的。

我为java编写这篇文章,但是您可能会发现它很有用。它使用长变量而不是双变量,但会处理nan、亚法线等。

public static boolean equal(double a, double b) {
    final long fm = 0xFFFFFFFFFFFFFL;       // fraction mask
    final long sm = 0x8000000000000000L;    // sign mask
    final long cm = 0x8000000000000L;       // most significant decimal bit mask
    long c = Double.doubleToLongBits(a), d = Double.doubleToLongBits(b);        
    int ea = (int) (c >> 52 & 2047), eb = (int) (d >> 52 & 2047);
    if (ea == 2047 && (c & fm) != 0 || eb == 2047 && (d & fm) != 0) return false;   // NaN 
    if (c == d) return true;                            // identical - fast check
    if (ea == 0 && eb == 0) return true;                // ±0 or subnormals
    if ((c & sm) != (d & sm)) return false;             // different signs
    if (abs(ea - eb) > 1) return false;                 // b > 2*a or a > 2*b
    d <<= 12; c <<= 12;
    if (ea < eb) c = c >> 1 | sm;
    else if (ea > eb) d = d >> 1 | sm;
    c -= d;
    return c < 65536 && c > -65536;     // don't use abs(), because:
    // There is a posibility c=0x8000000000000000 which cannot be converted to positive
}
public static boolean zero(double a) { return (Double.doubleToLongBits(a) >> 52 & 2047) < 3; }

请记住,在一些浮点运算之后,number可能与我们期望的非常不同。没有代码可以解决这个问题。

我的方法也许不正确,但很有用

将两个浮点数都转换为字符串,然后进行字符串比较

bool IsFlaotEqual(float a, float b, int decimal)
{
    TCHAR form[50] = _T("");
    _stprintf(form, _T("%%.%df"), decimal);


    TCHAR a1[30] = _T(""), a2[30] = _T("");
    _stprintf(a1, form, a);
    _stprintf(a2, form, b);

    if( _tcscmp(a1, a2) == 0 )
        return true;

    return false;

}

也可以做到操作人员超载

就数量的规模而言:

如果在某种物理意义上,ε是量的大小(即相对值)的一小部分,而A和B类型在同一意义上具有可比性,那么我认为,下面的观点是相当正确的:

#include <limits>
#include <iomanip>
#include <iostream>

#include <cmath>
#include <cstdlib>
#include <cassert>

template< typename A, typename B >
inline
bool close_enough(A const & a, B const & b,
                  typename std::common_type< A, B >::type const & epsilon)
{
    using std::isless;
    assert(isless(0, epsilon)); // epsilon is a part of the whole quantity
    assert(isless(epsilon, 1));
    using std::abs;
    auto const delta = abs(a - b);
    auto const x = abs(a);
    auto const y = abs(b);
    // comparable generally and |a - b| < eps * (|a| + |b|) / 2
    return isless(epsilon * y, x) && isless(epsilon * x, y) && isless((delta + delta) / (x + y), epsilon);
}

int main()
{
    std::cout << std::boolalpha << close_enough(0.9, 1.0, 0.1) << std::endl;
    std::cout << std::boolalpha << close_enough(1.0, 1.1, 0.1) << std::endl;
    std::cout << std::boolalpha << close_enough(1.1,    1.2,    0.01) << std::endl;
    std::cout << std::boolalpha << close_enough(1.0001, 1.0002, 0.01) << std::endl;
    std::cout << std::boolalpha << close_enough(1.0, 0.01, 0.1) << std::endl;
    return EXIT_SUCCESS;
}