比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

使用任何其他建议都要非常小心。这完全取决于上下文。

我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:

The implicit presumption in an algorithm that if a==b and b==c then a==c. Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS). The use of the same epsilon for both the cosine of angles and the length of lines! Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)

就像我说的,这完全取决于上下文和a和b的预期大小。

顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)

同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。

其他回答

我的方法也许不正确,但很有用

将两个浮点数都转换为字符串,然后进行字符串比较

bool IsFlaotEqual(float a, float b, int decimal)
{
    TCHAR form[50] = _T("");
    _stprintf(form, _T("%%.%df"), decimal);


    TCHAR a1[30] = _T(""), a2[30] = _T("");
    _stprintf(a1, form, a);
    _stprintf(a2, form, b);

    if( _tcscmp(a1, a2) == 0 )
        return true;

    return false;

}

也可以做到操作人员超载

我使用这个代码。不像上面的答案,这允许一个人 给出一个在代码注释中解释的abs_relative_error。

第一个版本比较复数,使错误 可以用两个矢量之间的夹角来解释 在复平面上具有相同的长度(这给出了一点 洞察力)。然后是2实数的正确公式 数字。

https://github.com/CarloWood/ai-utils/blob/master/almost_equal.h

后者是

template<class T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type
   almost_equal(T x, T y, T const abs_relative_error)
{
  return 2 * std::abs(x - y) <= abs_relative_error * std::abs(x + y);
}

其中abs_relative_error基本上(两倍)是文献中最接近定义的绝对值:相对错误。但这只是名字的选择。

我认为在复平面中最明显的是。如果|x| = 1, y在x周围形成一个直径为abs_relative_error的圆,则认为两者相等。

使用任何其他建议都要非常小心。这完全取决于上下文。

我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:

The implicit presumption in an algorithm that if a==b and b==c then a==c. Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS). The use of the same epsilon for both the cosine of angles and the length of lines! Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)

就像我说的,这完全取决于上下文和a和b的预期大小。

顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)

同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。

比较浮点数取决于上下文。因为即使改变操作的顺序也会产生不同的结果,所以知道你希望这些数字有多“相等”是很重要的。

在研究浮点数比较时,比较Bruce Dawson编写的浮点数是一个很好的开始。

以下定义来自Knuth的《The art of computer programming》:

bool approximatelyEqual(float a, float b, float epsilon)
{
    return fabs(a - b) <= ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool essentiallyEqual(float a, float b, float epsilon)
{
    return fabs(a - b) <= ( (fabs(a) > fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool definitelyGreaterThan(float a, float b, float epsilon)
{
    return (a - b) > ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool definitelyLessThan(float a, float b, float epsilon)
{
    return (b - a) > ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

当然,选择取决于上下文,并决定你想要的数字有多相等。

比较浮点数的另一种方法是查看数字的ULP(最后位置的单位)。虽然没有专门处理比较,但“每个计算机科学家都应该知道浮点数”这篇论文是了解浮点数如何工作以及陷阱是什么,包括什么是ULP的很好的资源。

我使用这个代码:

bool AlmostEqual(double v1, double v2)
    {
        return (std::fabs(v1 - v2) < std::fabs(std::min(v1, v2)) * std::numeric_limits<double>::epsilon());
    }