比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
使用任何其他建议都要非常小心。这完全取决于上下文。
我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:
The implicit presumption in an algorithm that if a==b and b==c then a==c.
Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS).
The use of the same epsilon for both the cosine of angles and the length of lines!
Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)
就像我说的,这完全取决于上下文和a和b的预期大小。
顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)
同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。
使用任何其他建议都要非常小心。这完全取决于上下文。
我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:
The implicit presumption in an algorithm that if a==b and b==c then a==c.
Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS).
The use of the same epsilon for both the cosine of angles and the length of lines!
Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)
就像我说的,这完全取决于上下文和a和b的预期大小。
顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)
同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。
下面是使用std::numeric_limits::epsilon()不是答案的证明——对于大于1的值它会失败:
证明我上面的评论:
#include <stdio.h>
#include <limits>
double ItoD (__int64 x) {
// Return double from 64-bit hexadecimal representation.
return *(reinterpret_cast<double*>(&x));
}
void test (__int64 ai, __int64 bi) {
double a = ItoD(ai), b = ItoD(bi);
bool close = std::fabs(a-b) < std::numeric_limits<double>::epsilon();
printf ("%.16f and %.16f %s close.\n", a, b, close ? "are " : "are not");
}
int main()
{
test (0x3fe0000000000000L,
0x3fe0000000000001L);
test (0x3ff0000000000000L,
0x3ff0000000000001L);
}
运行产生如下输出:
0.5000000000000000 and 0.5000000000000001 are close.
1.0000000000000000 and 1.0000000000000002 are not close.
请注意,在第二种情况下(1且仅大于1),两个输入值尽可能接近,并且仍然比较为不接近。因此,对于大于1.0的值,不妨只使用相等性测试。当比较浮点值时,固定的epsilon将无法保存您的数据。
我使用这个代码。不像上面的答案,这允许一个人
给出一个在代码注释中解释的abs_relative_error。
第一个版本比较复数,使错误
可以用两个矢量之间的夹角来解释
在复平面上具有相同的长度(这给出了一点
洞察力)。然后是2实数的正确公式
数字。
https://github.com/CarloWood/ai-utils/blob/master/almost_equal.h
后者是
template<class T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type
almost_equal(T x, T y, T const abs_relative_error)
{
return 2 * std::abs(x - y) <= abs_relative_error * std::abs(x + y);
}
其中abs_relative_error基本上(两倍)是文献中最接近定义的绝对值:相对错误。但这只是名字的选择。
我认为在复平面中最明显的是。如果|x| = 1, y在x周围形成一个直径为abs_relative_error的圆,则认为两者相等。