比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
我使用这个代码。不像上面的答案,这允许一个人
给出一个在代码注释中解释的abs_relative_error。
第一个版本比较复数,使错误
可以用两个矢量之间的夹角来解释
在复平面上具有相同的长度(这给出了一点
洞察力)。然后是2实数的正确公式
数字。
https://github.com/CarloWood/ai-utils/blob/master/almost_equal.h
后者是
template<class T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type
almost_equal(T x, T y, T const abs_relative_error)
{
return 2 * std::abs(x - y) <= abs_relative_error * std::abs(x + y);
}
其中abs_relative_error基本上(两倍)是文献中最接近定义的绝对值:相对错误。但这只是名字的选择。
我认为在复平面中最明显的是。如果|x| = 1, y在x周围形成一个直径为abs_relative_error的圆,则认为两者相等。
意识到这是一个老话题,但这篇文章是我发现的关于比较浮点数的最直接的文章之一,如果你想探索更多,它也有更详细的参考资料,它的主要站点涵盖了处理浮点数的完整范围的问题《浮点指南:比较》。
我们可以在浮点公差中找到一篇更实用的文章,并指出有绝对公差测试,在c++中归结为:
bool absoluteToleranceCompare(double x, double y)
{
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon() ;
}
及相对耐量试验:
bool relativeToleranceCompare(double x, double y)
{
double maxXY = std::max( std::fabs(x) , std::fabs(y) ) ;
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXY ;
}
文章指出,当x和y较大时,绝对检验失败;当x和y较小时,相对检验失败。假设绝对耐受性和相对耐受性是相同的,综合测试将是这样的:
bool combinedToleranceCompare(double x, double y)
{
double maxXYOne = std::max( { 1.0, std::fabs(x) , std::fabs(y) } ) ;
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXYOne ;
}
我的方法也许不正确,但很有用
将两个浮点数都转换为字符串,然后进行字符串比较
bool IsFlaotEqual(float a, float b, int decimal)
{
TCHAR form[50] = _T("");
_stprintf(form, _T("%%.%df"), decimal);
TCHAR a1[30] = _T(""), a2[30] = _T("");
_stprintf(a1, form, a);
_stprintf(a2, form, b);
if( _tcscmp(a1, a2) == 0 )
return true;
return false;
}
也可以做到操作人员超载
你写的代码有bug:
return (diff < EPSILON) && (-diff > EPSILON);
正确的代码应该是:
return (diff < EPSILON) && (diff > -EPSILON);
(…是的,这是不同的)
我想知道晶圆厂是否会让你在某些情况下失去懒惰的评价。我会说这取决于编译器。你可能想两种都试试。如果它们在平均水平上是相等的,则采用晶圆厂实现。
如果你有一些关于两个浮点数中哪一个比另一个更大的信息,你可以根据比较的顺序来更好地利用惰性求值。
最后,通过内联这个函数可能会得到更好的结果。不过不太可能有太大改善……
编辑:OJ,谢谢你纠正你的代码。我相应地删除了我的评论
使用任何其他建议都要非常小心。这完全取决于上下文。
我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:
The implicit presumption in an algorithm that if a==b and b==c then a==c.
Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS).
The use of the same epsilon for both the cosine of angles and the length of lines!
Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)
就像我说的,这完全取决于上下文和a和b的预期大小。
顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)
同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。
就数量的规模而言:
如果在某种物理意义上,ε是量的大小(即相对值)的一小部分,而A和B类型在同一意义上具有可比性,那么我认为,下面的观点是相当正确的:
#include <limits>
#include <iomanip>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cassert>
template< typename A, typename B >
inline
bool close_enough(A const & a, B const & b,
typename std::common_type< A, B >::type const & epsilon)
{
using std::isless;
assert(isless(0, epsilon)); // epsilon is a part of the whole quantity
assert(isless(epsilon, 1));
using std::abs;
auto const delta = abs(a - b);
auto const x = abs(a);
auto const y = abs(b);
// comparable generally and |a - b| < eps * (|a| + |b|) / 2
return isless(epsilon * y, x) && isless(epsilon * x, y) && isless((delta + delta) / (x + y), epsilon);
}
int main()
{
std::cout << std::boolalpha << close_enough(0.9, 1.0, 0.1) << std::endl;
std::cout << std::boolalpha << close_enough(1.0, 1.1, 0.1) << std::endl;
std::cout << std::boolalpha << close_enough(1.1, 1.2, 0.01) << std::endl;
std::cout << std::boolalpha << close_enough(1.0001, 1.0002, 0.01) << std::endl;
std::cout << std::boolalpha << close_enough(1.0, 0.01, 0.1) << std::endl;
return EXIT_SUCCESS;
}