比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

意识到这是一个老话题,但这篇文章是我发现的关于比较浮点数的最直接的文章之一,如果你想探索更多,它也有更详细的参考资料,它的主要站点涵盖了处理浮点数的完整范围的问题《浮点指南:比较》。

我们可以在浮点公差中找到一篇更实用的文章,并指出有绝对公差测试,在c++中归结为:

bool absoluteToleranceCompare(double x, double y)
{
    return std::fabs(x - y) <= std::numeric_limits<double>::epsilon() ;
}

及相对耐量试验:

bool relativeToleranceCompare(double x, double y)
{
    double maxXY = std::max( std::fabs(x) , std::fabs(y) ) ;
    return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXY ;
}

文章指出,当x和y较大时,绝对检验失败;当x和y较小时,相对检验失败。假设绝对耐受性和相对耐受性是相同的,综合测试将是这样的:

bool combinedToleranceCompare(double x, double y)
{
    double maxXYOne = std::max( { 1.0, std::fabs(x) , std::fabs(y) } ) ;

    return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXYOne ;
}

其他回答

'返回fabs(a - b) < EPSILON;

这是可以的,如果:

输入的数量级变化不大 极少数相反的符号可以被视为相等

否则就会给你带来麻烦。双精度数的分辨率约为小数点后16位。如果您正在比较的两个数字在量级上大于EPSILON*1.0E16,那么您可能会说:

return a==b;

我将研究一种不同的方法,假设您需要担心第一个问题,并假设第二个问题对您的应用程序很好。解决方案应该是这样的:

#define VERYSMALL  (1.0E-150)
#define EPSILON    (1.0E-8)
bool AreSame(double a, double b)
{
    double absDiff = fabs(a - b);
    if (absDiff < VERYSMALL)
    {
        return true;
    }

    double maxAbs  = max(fabs(a) - fabs(b));
    return (absDiff/maxAbs) < EPSILON;
}

这在计算上是昂贵的,但有时是需要的。这就是我们公司必须做的事情,因为我们要处理一个工程库,输入可能相差几十个数量级。

无论如何,关键在于(并且适用于几乎所有的编程问题):评估你的需求是什么,然后想出一个解决方案来满足你的需求——不要认为简单的答案就能满足你的需求。如果在您的评估后,您发现fabs(a-b) < EPSILON将足够,完美-使用它!但也要注意它的缺点和其他可能的解决方案。

我使用这个代码:

bool AlmostEqual(double v1, double v2)
    {
        return (std::fabs(v1 - v2) < std::fabs(std::min(v1, v2)) * std::numeric_limits<double>::epsilon());
    }

Qt实现了两个函数,也许你可以从中学到一些东西:

static inline bool qFuzzyCompare(double p1, double p2)
{
    return (qAbs(p1 - p2) <= 0.000000000001 * qMin(qAbs(p1), qAbs(p2)));
}

static inline bool qFuzzyCompare(float p1, float p2)
{
    return (qAbs(p1 - p2) <= 0.00001f * qMin(qAbs(p1), qAbs(p2)));
}

您可能需要以下函数,因为

请注意,比较p1或p2为0.0的值是无效的, 也不会比较其中一个值为NaN或无穷大的值。 如果其中一个值总是0.0,则使用qFuzzyIsNull代替。如果一个人 其中的值很可能是0.0,一种解决方案是将两者都加上1.0 值。

static inline bool qFuzzyIsNull(double d)
{
    return qAbs(d) <= 0.000000000001;
}

static inline bool qFuzzyIsNull(float f)
{
    return qAbs(f) <= 0.00001f;
}

Why not perform bitwise XOR? Two floating point numbers are equal if their corresponding bits are equal. I think, the decision to place the exponent bits before mantissa was made to speed up comparison of two floats. I think, many answers here are missing the point of epsilon comparison. Epsilon value only depends on to what precision floating point numbers are compared. For example, after doing some arithmetic with floats you get two numbers: 2.5642943554342 and 2.5642943554345. They are not equal, but for the solution only 3 decimal digits matter so then they are equal: 2.564 and 2.564. In this case you choose epsilon equal to 0.001. Epsilon comparison is also possible with bitwise XOR. Correct me if I am wrong.

这个怎么样?

template<typename T>
bool FloatingPointEqual( T a, T b ) { return !(a < b) && !(b < a); }

我见过各种方法,但从来没有见过这个,所以我也很好奇听到任何评论!