比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

与epsilon值进行比较是大多数人所做的(甚至是在游戏编程中)。

你应该稍微改变你的实现:

bool AreSame(double a, double b)
{
    return fabs(a - b) < EPSILON;
}

编辑:克里斯特在最近的一篇博客文章中添加了一堆关于这个主题的很棒的信息。享受。

其他回答

Why not perform bitwise XOR? Two floating point numbers are equal if their corresponding bits are equal. I think, the decision to place the exponent bits before mantissa was made to speed up comparison of two floats. I think, many answers here are missing the point of epsilon comparison. Epsilon value only depends on to what precision floating point numbers are compared. For example, after doing some arithmetic with floats you get two numbers: 2.5642943554342 and 2.5642943554345. They are not equal, but for the solution only 3 decimal digits matter so then they are equal: 2.564 and 2.564. In this case you choose epsilon equal to 0.001. Epsilon comparison is also possible with bitwise XOR. Correct me if I am wrong.

不幸的是,即使您的“浪费”代码也是不正确的。EPSILON是可以添加到1.0并更改其值的最小值。值1.0非常重要——更大的数字在添加到EPSILON时不会改变。现在,您可以将这个值缩放到您正在比较的数字,以判断它们是否不同。比较两个双精度对象的正确表达式是:

if (fabs(a - b) <= DBL_EPSILON * fmax(fabs(a), fabs(b)))
{
    // ...
}

这是最小值。一般来说,你会想要在计算中考虑噪声,并忽略一些最不重要的位,所以更现实的比较应该是这样的:

if (fabs(a - b) <= 16 * DBL_EPSILON * fmax(fabs(a), fabs(b)))
{
    // ...
}

如果比较性能对您非常重要,并且您知道值的范围,那么您应该使用定点数字。

我使用这个代码。不像上面的答案,这允许一个人 给出一个在代码注释中解释的abs_relative_error。

第一个版本比较复数,使错误 可以用两个矢量之间的夹角来解释 在复平面上具有相同的长度(这给出了一点 洞察力)。然后是2实数的正确公式 数字。

https://github.com/CarloWood/ai-utils/blob/master/almost_equal.h

后者是

template<class T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type
   almost_equal(T x, T y, T const abs_relative_error)
{
  return 2 * std::abs(x - y) <= abs_relative_error * std::abs(x + y);
}

其中abs_relative_error基本上(两倍)是文献中最接近定义的绝对值:相对错误。但这只是名字的选择。

我认为在复平面中最明显的是。如果|x| = 1, y在x周围形成一个直径为abs_relative_error的圆,则认为两者相等。

下面是使用std::numeric_limits::epsilon()不是答案的证明——对于大于1的值它会失败:

证明我上面的评论:

#include <stdio.h>
#include <limits>

double ItoD (__int64 x) {
    // Return double from 64-bit hexadecimal representation.
    return *(reinterpret_cast<double*>(&x));
}

void test (__int64 ai, __int64 bi) {
    double a = ItoD(ai), b = ItoD(bi);
    bool close = std::fabs(a-b) < std::numeric_limits<double>::epsilon();
    printf ("%.16f and %.16f %s close.\n", a, b, close ? "are " : "are not");
}

int main()
{
    test (0x3fe0000000000000L,
          0x3fe0000000000001L);

    test (0x3ff0000000000000L,
          0x3ff0000000000001L);
}

运行产生如下输出:

0.5000000000000000 and 0.5000000000000001 are  close.
1.0000000000000000 and 1.0000000000000002 are not close.

请注意,在第二种情况下(1且仅大于1),两个输入值尽可能接近,并且仍然比较为不接近。因此,对于大于1.0的值,不妨只使用相等性测试。当比较浮点值时,固定的epsilon将无法保存您的数据。

在这个版本中,你可以检查,这些数字之间的差异并不比某些分数(比如,0.0001%)更大:

bool floatApproximatelyEquals(const float a, const float b) {
    if (b == 0.) return a == 0.; // preventing division by zero
    return abs(1. - a / b) < 1e-6;
}

请注意Sneftel关于浮动可能的分数限制的评论。

还要注意的是,它不同于使用绝对的epsilon的方法——这里你不需要担心“数量级”——数字可能是,比如说1e100,或者1e-100,它们总是会被一致地比较,而且你不必为每一种情况更新epsilon。