比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
我的课程是基于之前发布的答案。非常类似于谷歌的代码,但我使用了一个偏差,将所有NaN值推到0xFF000000以上。这样可以更快地检查NaN。
这段代码是为了演示概念,而不是通用的解决方案。谷歌的代码已经展示了如何计算所有平台特定的值,我不想复制所有这些。我对这段代码做了有限的测试。
typedef unsigned int U32;
// Float Memory Bias (unsigned)
// ----- ------ ---------------
// NaN 0xFFFFFFFF 0xFF800001
// NaN 0xFF800001 0xFFFFFFFF
// -Infinity 0xFF800000 0x00000000 ---
// -3.40282e+038 0xFF7FFFFF 0x00000001 |
// -1.40130e-045 0x80000001 0x7F7FFFFF |
// -0.0 0x80000000 0x7F800000 |--- Valid <= 0xFF000000.
// 0.0 0x00000000 0x7F800000 | NaN > 0xFF000000
// 1.40130e-045 0x00000001 0x7F800001 |
// 3.40282e+038 0x7F7FFFFF 0xFEFFFFFF |
// Infinity 0x7F800000 0xFF000000 ---
// NaN 0x7F800001 0xFF000001
// NaN 0x7FFFFFFF 0xFF7FFFFF
//
// Either value of NaN returns false.
// -Infinity and +Infinity are not "close".
// -0 and +0 are equal.
//
class CompareFloat{
public:
union{
float m_f32;
U32 m_u32;
};
static bool CompareFloat::IsClose( float A, float B, U32 unitsDelta = 4 )
{
U32 a = CompareFloat::GetBiased( A );
U32 b = CompareFloat::GetBiased( B );
if ( (a > 0xFF000000) || (b > 0xFF000000) )
{
return( false );
}
return( (static_cast<U32>(abs( a - b ))) < unitsDelta );
}
protected:
static U32 CompareFloat::GetBiased( float f )
{
U32 r = ((CompareFloat*)&f)->m_u32;
if ( r & 0x80000000 )
{
return( ~r - 0x007FFFFF );
}
return( r + 0x7F800000 );
}
};
使用任何其他建议都要非常小心。这完全取决于上下文。
我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:
The implicit presumption in an algorithm that if a==b and b==c then a==c.
Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS).
The use of the same epsilon for both the cosine of angles and the length of lines!
Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)
就像我说的,这完全取决于上下文和a和b的预期大小。
顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)
同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。
'返回fabs(a - b) < EPSILON;
这是可以的,如果:
输入的数量级变化不大
极少数相反的符号可以被视为相等
否则就会给你带来麻烦。双精度数的分辨率约为小数点后16位。如果您正在比较的两个数字在量级上大于EPSILON*1.0E16,那么您可能会说:
return a==b;
我将研究一种不同的方法,假设您需要担心第一个问题,并假设第二个问题对您的应用程序很好。解决方案应该是这样的:
#define VERYSMALL (1.0E-150)
#define EPSILON (1.0E-8)
bool AreSame(double a, double b)
{
double absDiff = fabs(a - b);
if (absDiff < VERYSMALL)
{
return true;
}
double maxAbs = max(fabs(a) - fabs(b));
return (absDiff/maxAbs) < EPSILON;
}
这在计算上是昂贵的,但有时是需要的。这就是我们公司必须做的事情,因为我们要处理一个工程库,输入可能相差几十个数量级。
无论如何,关键在于(并且适用于几乎所有的编程问题):评估你的需求是什么,然后想出一个解决方案来满足你的需求——不要认为简单的答案就能满足你的需求。如果在您的评估后,您发现fabs(a-b) < EPSILON将足够,完美-使用它!但也要注意它的缺点和其他可能的解决方案。