比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
在这个版本中,你可以检查,这些数字之间的差异并不比某些分数(比如,0.0001%)更大:
bool floatApproximatelyEquals(const float a, const float b) {
if (b == 0.) return a == 0.; // preventing division by zero
return abs(1. - a / b) < 1e-6;
}
请注意Sneftel关于浮动可能的分数限制的评论。
还要注意的是,它不同于使用绝对的epsilon的方法——这里你不需要担心“数量级”——数字可能是,比如说1e100,或者1e-100,它们总是会被一致地比较,而且你不必为每一种情况更新epsilon。
就数量的规模而言:
如果在某种物理意义上,ε是量的大小(即相对值)的一小部分,而A和B类型在同一意义上具有可比性,那么我认为,下面的观点是相当正确的:
#include <limits>
#include <iomanip>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cassert>
template< typename A, typename B >
inline
bool close_enough(A const & a, B const & b,
typename std::common_type< A, B >::type const & epsilon)
{
using std::isless;
assert(isless(0, epsilon)); // epsilon is a part of the whole quantity
assert(isless(epsilon, 1));
using std::abs;
auto const delta = abs(a - b);
auto const x = abs(a);
auto const y = abs(b);
// comparable generally and |a - b| < eps * (|a| + |b|) / 2
return isless(epsilon * y, x) && isless(epsilon * x, y) && isless((delta + delta) / (x + y), epsilon);
}
int main()
{
std::cout << std::boolalpha << close_enough(0.9, 1.0, 0.1) << std::endl;
std::cout << std::boolalpha << close_enough(1.0, 1.1, 0.1) << std::endl;
std::cout << std::boolalpha << close_enough(1.1, 1.2, 0.01) << std::endl;
std::cout << std::boolalpha << close_enough(1.0001, 1.0002, 0.01) << std::endl;
std::cout << std::boolalpha << close_enough(1.0, 0.01, 0.1) << std::endl;
return EXIT_SUCCESS;
}
我的方法也许不正确,但很有用
将两个浮点数都转换为字符串,然后进行字符串比较
bool IsFlaotEqual(float a, float b, int decimal)
{
TCHAR form[50] = _T("");
_stprintf(form, _T("%%.%df"), decimal);
TCHAR a1[30] = _T(""), a2[30] = _T("");
_stprintf(a1, form, a);
_stprintf(a2, form, b);
if( _tcscmp(a1, a2) == 0 )
return true;
return false;
}
也可以做到操作人员超载