比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

我为java编写这篇文章,但是您可能会发现它很有用。它使用长变量而不是双变量,但会处理nan、亚法线等。

public static boolean equal(double a, double b) {
    final long fm = 0xFFFFFFFFFFFFFL;       // fraction mask
    final long sm = 0x8000000000000000L;    // sign mask
    final long cm = 0x8000000000000L;       // most significant decimal bit mask
    long c = Double.doubleToLongBits(a), d = Double.doubleToLongBits(b);        
    int ea = (int) (c >> 52 & 2047), eb = (int) (d >> 52 & 2047);
    if (ea == 2047 && (c & fm) != 0 || eb == 2047 && (d & fm) != 0) return false;   // NaN 
    if (c == d) return true;                            // identical - fast check
    if (ea == 0 && eb == 0) return true;                // ±0 or subnormals
    if ((c & sm) != (d & sm)) return false;             // different signs
    if (abs(ea - eb) > 1) return false;                 // b > 2*a or a > 2*b
    d <<= 12; c <<= 12;
    if (ea < eb) c = c >> 1 | sm;
    else if (ea > eb) d = d >> 1 | sm;
    c -= d;
    return c < 65536 && c > -65536;     // don't use abs(), because:
    // There is a posibility c=0x8000000000000000 which cannot be converted to positive
}
public static boolean zero(double a) { return (Double.doubleToLongBits(a) >> 52 & 2047) < 3; }

请记住,在一些浮点运算之后,number可能与我们期望的非常不同。没有代码可以解决这个问题。

其他回答

这取决于你想要的比较有多精确。如果您想对完全相同的数字进行比较,那么只需使用==。(除非你真的想要完全相同的数字,否则你几乎不会想这么做。)在任何一个不错的平台上,你都可以做到以下几点:

diff= a - b; return fabs(diff)<EPSILON;

因为晶圆厂往往很快。我说的快是指它基本上是一个位与,所以它最好快。

用于比较双精度和浮点数的整数技巧很好,但往往会使各种CPU管道更难有效处理。现在,由于使用堆栈作为频繁使用的值的临时存储区域,在某些有序架构上它肯定不会更快。(在乎的人可以去Load-hit-store。)

以更一般的方式:

template <typename T>
bool compareNumber(const T& a, const T& b) {
    return std::abs(a - b) < std::numeric_limits<T>::epsilon();
}

注意: 正如@SirGuy所指出的,这种方法是有缺陷的。 我把这个答案留在这里,作为一个不遵循的例子。

你写的代码有bug:

return (diff < EPSILON) && (-diff > EPSILON);

正确的代码应该是:

return (diff < EPSILON) && (diff > -EPSILON);

(…是的,这是不同的)

我想知道晶圆厂是否会让你在某些情况下失去懒惰的评价。我会说这取决于编译器。你可能想两种都试试。如果它们在平均水平上是相等的,则采用晶圆厂实现。

如果你有一些关于两个浮点数中哪一个比另一个更大的信息,你可以根据比较的顺序来更好地利用惰性求值。

最后,通过内联这个函数可能会得到更好的结果。不过不太可能有太大改善……

编辑:OJ,谢谢你纠正你的代码。我相应地删除了我的评论

General-purpose comparison of floating-point numbers is generally meaningless. How to compare really depends on a problem at hand. In many problems, numbers are sufficiently discretized to allow comparing them within a given tolerance. Unfortunately, there are just as many problems, where such trick doesn't really work. For one example, consider working with a Heaviside (step) function of a number in question (digital stock options come to mind) when your observations are very close to the barrier. Performing tolerance-based comparison wouldn't do much good, as it would effectively shift the issue from the original barrier to two new ones. Again, there is no general-purpose solution for such problems and the particular solution might require going as far as changing the numerical method in order to achieve stability.

我使用这个代码:

bool AlmostEqual(double v1, double v2)
    {
        return (std::fabs(v1 - v2) < std::fabs(std::min(v1, v2)) * std::numeric_limits<double>::epsilon());
    }