比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

我为java编写这篇文章,但是您可能会发现它很有用。它使用长变量而不是双变量,但会处理nan、亚法线等。

public static boolean equal(double a, double b) {
    final long fm = 0xFFFFFFFFFFFFFL;       // fraction mask
    final long sm = 0x8000000000000000L;    // sign mask
    final long cm = 0x8000000000000L;       // most significant decimal bit mask
    long c = Double.doubleToLongBits(a), d = Double.doubleToLongBits(b);        
    int ea = (int) (c >> 52 & 2047), eb = (int) (d >> 52 & 2047);
    if (ea == 2047 && (c & fm) != 0 || eb == 2047 && (d & fm) != 0) return false;   // NaN 
    if (c == d) return true;                            // identical - fast check
    if (ea == 0 && eb == 0) return true;                // ±0 or subnormals
    if ((c & sm) != (d & sm)) return false;             // different signs
    if (abs(ea - eb) > 1) return false;                 // b > 2*a or a > 2*b
    d <<= 12; c <<= 12;
    if (ea < eb) c = c >> 1 | sm;
    else if (ea > eb) d = d >> 1 | sm;
    c -= d;
    return c < 65536 && c > -65536;     // don't use abs(), because:
    // There is a posibility c=0x8000000000000000 which cannot be converted to positive
}
public static boolean zero(double a) { return (Double.doubleToLongBits(a) >> 52 & 2047) < 3; }

请记住,在一些浮点运算之后,number可能与我们期望的非常不同。没有代码可以解决这个问题。

其他回答

与epsilon值进行比较是大多数人所做的(甚至是在游戏编程中)。

你应该稍微改变你的实现:

bool AreSame(double a, double b)
{
    return fabs(a - b) < EPSILON;
}

编辑:克里斯特在最近的一篇博客文章中添加了一堆关于这个主题的很棒的信息。享受。

你必须为浮点数比较做这个处理,因为浮点数不能像整数类型那样完美地比较。下面是各种比较运算符的函数。

浮点数等于(==)

我也更喜欢减法技术,而不是依赖于fabs()或abs(),但我必须在从64位PC到ATMega328微控制器(Arduino)的各种架构上快速配置它,才能真正看到它是否会产生很大的性能差异。

所以,让我们忘记这些绝对值的东西,只做一些减法和比较!

从微软的例子修改如下:

/// @brief      See if two floating point numbers are approximately equal.
/// @param[in]  a        number 1
/// @param[in]  b        number 2
/// @param[in]  epsilon  A small value such that if the difference between the two numbers is
///                      smaller than this they can safely be considered to be equal.
/// @return     true if the two numbers are approximately equal, and false otherwise
bool is_float_eq(float a, float b, float epsilon) {
    return ((a - b) < epsilon) && ((b - a) < epsilon);
}
bool is_double_eq(double a, double b, double epsilon) {
    return ((a - b) < epsilon) && ((b - a) < epsilon);
}

使用示例:

constexpr float EPSILON = 0.0001; // 1e-4
is_float_eq(1.0001, 0.99998, EPSILON);

我不完全确定,但在我看来,对基于epsilon的方法的一些批评,正如这个高度好评的答案下面的评论所描述的那样,可以通过使用变量epsilon来解决,根据比较的浮点值缩放,像这样:

float a = 1.0001;
float b = 0.99998;
float epsilon = std::max(std::fabs(a), std::fabs(b)) * 1e-4;

is_float_eq(a, b, epsilon);

通过这种方式,epsilon值随浮点值伸缩,因此它的值不会小到不重要。

为了完整起见,让我们添加剩下的:

大于(>)小于(<):

/// @brief      See if floating point number `a` is > `b`
/// @param[in]  a        number 1
/// @param[in]  b        number 2
/// @param[in]  epsilon  a small value such that if `a` is > `b` by this amount, `a` is considered
///             to be definitively > `b`
/// @return     true if `a` is definitively > `b`, and false otherwise
bool is_float_gt(float a, float b, float epsilon) {
    return a > b + epsilon;
}
bool is_double_gt(double a, double b, double epsilon) {
    return a > b + epsilon;
}

/// @brief      See if floating point number `a` is < `b`
/// @param[in]  a        number 1
/// @param[in]  b        number 2
/// @param[in]  epsilon  a small value such that if `a` is < `b` by this amount, `a` is considered
///             to be definitively < `b`
/// @return     true if `a` is definitively < `b`, and false otherwise
bool is_float_lt(float a, float b, float epsilon) {
    return a < b - epsilon;
}
bool is_double_lt(double a, double b, double epsilon) {
    return a < b - epsilon;
}

大于或等于(>=),小于或等于(<=)

/// @brief      Returns true if `a` is definitively >= `b`, and false otherwise
bool is_float_ge(float a, float b, float epsilon) {
    return a > b - epsilon;
}
bool is_double_ge(double a, double b, double epsilon) {
    return a > b - epsilon;
}

/// @brief      Returns true if `a` is definitively <= `b`, and false otherwise
bool is_float_le(float a, float b, float epsilon) {
    return a < b + epsilon;
}
bool is_double_le(double a, double b, double epsilon) {
    return a < b + epsilon;
}

额外的改进:

A good default value for epsilon in C++ is std::numeric_limits<T>::epsilon(), which evaluates to either 0 or FLT_EPSILON, DBL_EPSILON, or LDBL_EPSILON. See here: https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon. You can also see the float.h header for FLT_EPSILON, DBL_EPSILON, and LDBL_EPSILON. See https://en.cppreference.com/w/cpp/header/cfloat and https://www.cplusplus.com/reference/cfloat/ You could template the functions instead, to handle all floating point types: float, double, and long double, with type checks for these types via a static_assert() inside the template. Scaling the epsilon value is a good idea to ensure it works for really large and really small a and b values. This article recommends and explains it: http://realtimecollisiondetection.net/blog/?p=89. So, you should scale epsilon by a scaling value equal to max(1.0, abs(a), abs(b)), as that article explains. Otherwise, as a and/or b increase in magnitude, the epsilon would eventually become so small relative to those values that it becomes lost in the floating point error. So, we scale it to become larger in magnitude like they are. However, using 1.0 as the smallest allowed scaling factor for epsilon also ensures that for really small-magnitude a and b values, epsilon itself doesn't get scaled so small that it also becomes lost in the floating point error. So, we limit the minimum scaling factor to 1.0. If you want to "encapsulate" the above functions into a class, don't. Instead, wrap them up in a namespace if you like in order to namespace them. Ex: if you put all of the stand-alone functions into a namespace called float_comparison, then you could access the is_eq() function like this, for instance: float_comparison::is_eq(1.0, 1.5);. It might also be nice to add comparisons against zero, not just comparisons between two values. So, here is a better type of solution with the above improvements in place: namespace float_comparison { /// Scale the epsilon value to become large for large-magnitude a or b, /// but no smaller than 1.0, per the explanation above, to ensure that /// epsilon doesn't ever fall out in floating point error as a and/or b /// increase in magnitude. template<typename T> static constexpr T scale_epsilon(T a, T b, T epsilon = std::numeric_limits<T>::epsilon()) noexcept { static_assert(std::is_floating_point_v<T>, "Floating point comparisons " "require type float, double, or long double."); T scaling_factor; // Special case for when a or b is infinity if (std::isinf(a) || std::isinf(b)) { scaling_factor = 0; } else { scaling_factor = std::max({(T)1.0, std::abs(a), std::abs(b)}); } T epsilon_scaled = scaling_factor * std::abs(epsilon); return epsilon_scaled; } // Compare two values /// Equal: returns true if a is approximately == b, and false otherwise template<typename T> static constexpr bool is_eq(T a, T b, T epsilon = std::numeric_limits<T>::epsilon()) noexcept { static_assert(std::is_floating_point_v<T>, "Floating point comparisons " "require type float, double, or long double."); // test `a == b` first to see if both a and b are either infinity // or -infinity return a == b || std::abs(a - b) <= scale_epsilon(a, b, epsilon); } /* etc. etc.: is_eq() is_ne() is_lt() is_le() is_gt() is_ge() */ // Compare against zero /// Equal: returns true if a is approximately == 0, and false otherwise template<typename T> static constexpr bool is_eq_zero(T a, T epsilon = std::numeric_limits<T>::epsilon()) noexcept { static_assert(std::is_floating_point_v<T>, "Floating point comparisons " "require type float, double, or long double."); return is_eq(a, (T)0.0, epsilon); } /* etc. etc.: is_eq_zero() is_ne_zero() is_lt_zero() is_le_zero() is_gt_zero() is_ge_zero() */ } // namespace float_comparison

参见:

The macro forms of some of the functions above in my repo here: utilities.h. UPDATE 29 NOV 2020: it's a work-in-progress, and I'm going to make it a separate answer when ready, but I've produced a better, scaled-epsilon version of all of the functions in C in this file here: utilities.c. Take a look. ADDITIONAL READING I need to do now have done: Floating-point tolerances revisited, by Christer Ericson. VERY USEFUL ARTICLE! It talks about scaling epsilon in order to ensure it never falls out in floating point error, even for really large-magnitude a and/or b values!

这个怎么样?

template<typename T>
bool FloatingPointEqual( T a, T b ) { return !(a < b) && !(b < a); }

我见过各种方法,但从来没有见过这个,所以我也很好奇听到任何评论!

比较浮点数取决于上下文。因为即使改变操作的顺序也会产生不同的结果,所以知道你希望这些数字有多“相等”是很重要的。

在研究浮点数比较时,比较Bruce Dawson编写的浮点数是一个很好的开始。

以下定义来自Knuth的《The art of computer programming》:

bool approximatelyEqual(float a, float b, float epsilon)
{
    return fabs(a - b) <= ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool essentiallyEqual(float a, float b, float epsilon)
{
    return fabs(a - b) <= ( (fabs(a) > fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool definitelyGreaterThan(float a, float b, float epsilon)
{
    return (a - b) > ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

bool definitelyLessThan(float a, float b, float epsilon)
{
    return (b - a) > ( (fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * epsilon);
}

当然,选择取决于上下文,并决定你想要的数字有多相等。

比较浮点数的另一种方法是查看数字的ULP(最后位置的单位)。虽然没有专门处理比较,但“每个计算机科学家都应该知道浮点数”这篇论文是了解浮点数如何工作以及陷阱是什么,包括什么是ULP的很好的资源。

正如其他人所指出的那样,使用固定指数(例如0.0000001)对于远离该值的值是无用的。例如,如果你的两个值是10000.000977和10000,那么这两个数字之间没有32位浮点值——10000和10000.000977是你可能得到的最接近的值,而不是位对位相同。这里,小于0.0009是没有意义的;你也可以使用直接等式运算符。

同样地,当两个值的大小接近ε时,相对误差增长到100%。

Thus, trying to mix a fixed point number such as 0.00001 with floating-point values (where the exponent is arbitrary) is a pointless exercise. This will only ever work if you can be assured that the operand values lie within a narrow domain (that is, close to some specific exponent), and if you properly select an epsilon value for that specific test. If you pull a number out of the air ("Hey! 0.00001 is small, so that must be good!"), you're doomed to numerical errors. I've spent plenty of time debugging bad numerical code where some poor schmuck tosses in random epsilon values to make yet another test case work.

如果你从事任何类型的数值编程,并认为你需要达到定点的epsilon,请阅读BRUCE关于比较浮点数的文章。

浮点数比较