比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
你写的代码有bug:
return (diff < EPSILON) && (-diff > EPSILON);
正确的代码应该是:
return (diff < EPSILON) && (diff > -EPSILON);
(…是的,这是不同的)
我想知道晶圆厂是否会让你在某些情况下失去懒惰的评价。我会说这取决于编译器。你可能想两种都试试。如果它们在平均水平上是相等的,则采用晶圆厂实现。
如果你有一些关于两个浮点数中哪一个比另一个更大的信息,你可以根据比较的顺序来更好地利用惰性求值。
最后,通过内联这个函数可能会得到更好的结果。不过不太可能有太大改善……
编辑:OJ,谢谢你纠正你的代码。我相应地删除了我的评论
我的方法也许不正确,但很有用
将两个浮点数都转换为字符串,然后进行字符串比较
bool IsFlaotEqual(float a, float b, int decimal)
{
TCHAR form[50] = _T("");
_stprintf(form, _T("%%.%df"), decimal);
TCHAR a1[30] = _T(""), a2[30] = _T("");
_stprintf(a1, form, a);
_stprintf(a2, form, b);
if( _tcscmp(a1, a2) == 0 )
return true;
return false;
}
也可以做到操作人员超载
下面是使用std::numeric_limits::epsilon()不是答案的证明——对于大于1的值它会失败:
证明我上面的评论:
#include <stdio.h>
#include <limits>
double ItoD (__int64 x) {
// Return double from 64-bit hexadecimal representation.
return *(reinterpret_cast<double*>(&x));
}
void test (__int64 ai, __int64 bi) {
double a = ItoD(ai), b = ItoD(bi);
bool close = std::fabs(a-b) < std::numeric_limits<double>::epsilon();
printf ("%.16f and %.16f %s close.\n", a, b, close ? "are " : "are not");
}
int main()
{
test (0x3fe0000000000000L,
0x3fe0000000000001L);
test (0x3ff0000000000000L,
0x3ff0000000000001L);
}
运行产生如下输出:
0.5000000000000000 and 0.5000000000000001 are close.
1.0000000000000000 and 1.0000000000000002 are not close.
请注意,在第二种情况下(1且仅大于1),两个输入值尽可能接近,并且仍然比较为不接近。因此,对于大于1.0的值,不妨只使用相等性测试。当比较浮点值时,固定的epsilon将无法保存您的数据。
我为java编写这篇文章,但是您可能会发现它很有用。它使用长变量而不是双变量,但会处理nan、亚法线等。
public static boolean equal(double a, double b) {
final long fm = 0xFFFFFFFFFFFFFL; // fraction mask
final long sm = 0x8000000000000000L; // sign mask
final long cm = 0x8000000000000L; // most significant decimal bit mask
long c = Double.doubleToLongBits(a), d = Double.doubleToLongBits(b);
int ea = (int) (c >> 52 & 2047), eb = (int) (d >> 52 & 2047);
if (ea == 2047 && (c & fm) != 0 || eb == 2047 && (d & fm) != 0) return false; // NaN
if (c == d) return true; // identical - fast check
if (ea == 0 && eb == 0) return true; // ±0 or subnormals
if ((c & sm) != (d & sm)) return false; // different signs
if (abs(ea - eb) > 1) return false; // b > 2*a or a > 2*b
d <<= 12; c <<= 12;
if (ea < eb) c = c >> 1 | sm;
else if (ea > eb) d = d >> 1 | sm;
c -= d;
return c < 65536 && c > -65536; // don't use abs(), because:
// There is a posibility c=0x8000000000000000 which cannot be converted to positive
}
public static boolean zero(double a) { return (Double.doubleToLongBits(a) >> 52 & 2047) < 3; }
请记住,在一些浮点运算之后,number可能与我们期望的非常不同。没有代码可以解决这个问题。