比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
我最终花了相当多的时间在这个伟大的线程通过材料。我怀疑每个人都想花这么多时间,所以我将强调我所学到的总结和我实施的解决方案。
快速的总结
Is 1e-8 approximately same as 1e-16? If you are looking at noisy sensor data then probably yes but if you are doing molecular simulation then may be not! Bottom line: You always need to think of tolerance value in context of specific function call and not just make it generic app-wide hard-coded constant.
For general library functions, it's still nice to have parameter with default tolerance. A typical choice is numeric_limits::epsilon() which is same as FLT_EPSILON in float.h. This is however problematic because epsilon for comparing values like 1.0 is not same as epsilon for values like 1E9. The FLT_EPSILON is defined for 1.0.
The obvious implementation to check if number is within tolerance is fabs(a-b) <= epsilon however this doesn't work because default epsilon is defined for 1.0. We need to scale epsilon up or down in terms of a and b.
There are two solution to this problem: either you set epsilon proportional to max(a,b) or you can get next representable numbers around a and then see if b falls into that range. The former is called "relative" method and later is called ULP method.
Both methods actually fails anyway when comparing with 0. In this case, application must supply correct tolerance.
实用函数实现(c++ 11)
//implements relative method - do not use for comparing with zero
//use this most of the time, tolerance needs to be meaningful in your context
template<typename TReal>
static bool isApproximatelyEqual(TReal a, TReal b, TReal tolerance = std::numeric_limits<TReal>::epsilon())
{
TReal diff = std::fabs(a - b);
if (diff <= tolerance)
return true;
if (diff < std::fmax(std::fabs(a), std::fabs(b)) * tolerance)
return true;
return false;
}
//supply tolerance that is meaningful in your context
//for example, default tolerance may not work if you are comparing double with float
template<typename TReal>
static bool isApproximatelyZero(TReal a, TReal tolerance = std::numeric_limits<TReal>::epsilon())
{
if (std::fabs(a) <= tolerance)
return true;
return false;
}
//use this when you want to be on safe side
//for example, don't start rover unless signal is above 1
template<typename TReal>
static bool isDefinitelyLessThan(TReal a, TReal b, TReal tolerance = std::numeric_limits<TReal>::epsilon())
{
TReal diff = a - b;
if (diff < tolerance)
return true;
if (diff < std::fmax(std::fabs(a), std::fabs(b)) * tolerance)
return true;
return false;
}
template<typename TReal>
static bool isDefinitelyGreaterThan(TReal a, TReal b, TReal tolerance = std::numeric_limits<TReal>::epsilon())
{
TReal diff = a - b;
if (diff > tolerance)
return true;
if (diff > std::fmax(std::fabs(a), std::fabs(b)) * tolerance)
return true;
return false;
}
//implements ULP method
//use this when you are only concerned about floating point precision issue
//for example, if you want to see if a is 1.0 by checking if its within
//10 closest representable floating point numbers around 1.0.
template<typename TReal>
static bool isWithinPrecisionInterval(TReal a, TReal b, unsigned int interval_size = 1)
{
TReal min_a = a - (a - std::nextafter(a, std::numeric_limits<TReal>::lowest())) * interval_size;
TReal max_a = a + (std::nextafter(a, std::numeric_limits<TReal>::max()) - a) * interval_size;
return min_a <= b && max_a >= b;
}
就数量的规模而言:
如果在某种物理意义上,ε是量的大小(即相对值)的一小部分,而A和B类型在同一意义上具有可比性,那么我认为,下面的观点是相当正确的:
#include <limits>
#include <iomanip>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cassert>
template< typename A, typename B >
inline
bool close_enough(A const & a, B const & b,
typename std::common_type< A, B >::type const & epsilon)
{
using std::isless;
assert(isless(0, epsilon)); // epsilon is a part of the whole quantity
assert(isless(epsilon, 1));
using std::abs;
auto const delta = abs(a - b);
auto const x = abs(a);
auto const y = abs(b);
// comparable generally and |a - b| < eps * (|a| + |b|) / 2
return isless(epsilon * y, x) && isless(epsilon * x, y) && isless((delta + delta) / (x + y), epsilon);
}
int main()
{
std::cout << std::boolalpha << close_enough(0.9, 1.0, 0.1) << std::endl;
std::cout << std::boolalpha << close_enough(1.0, 1.1, 0.1) << std::endl;
std::cout << std::boolalpha << close_enough(1.1, 1.2, 0.01) << std::endl;
std::cout << std::boolalpha << close_enough(1.0001, 1.0002, 0.01) << std::endl;
std::cout << std::boolalpha << close_enough(1.0, 0.01, 0.1) << std::endl;
return EXIT_SUCCESS;
}
意识到这是一个老话题,但这篇文章是我发现的关于比较浮点数的最直接的文章之一,如果你想探索更多,它也有更详细的参考资料,它的主要站点涵盖了处理浮点数的完整范围的问题《浮点指南:比较》。
我们可以在浮点公差中找到一篇更实用的文章,并指出有绝对公差测试,在c++中归结为:
bool absoluteToleranceCompare(double x, double y)
{
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon() ;
}
及相对耐量试验:
bool relativeToleranceCompare(double x, double y)
{
double maxXY = std::max( std::fabs(x) , std::fabs(y) ) ;
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXY ;
}
文章指出,当x和y较大时,绝对检验失败;当x和y较小时,相对检验失败。假设绝对耐受性和相对耐受性是相同的,综合测试将是这样的:
bool combinedToleranceCompare(double x, double y)
{
double maxXYOne = std::max( { 1.0, std::fabs(x) , std::fabs(y) } ) ;
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXYOne ;
}
在这个版本中,你可以检查,这些数字之间的差异并不比某些分数(比如,0.0001%)更大:
bool floatApproximatelyEquals(const float a, const float b) {
if (b == 0.) return a == 0.; // preventing division by zero
return abs(1. - a / b) < 1e-6;
}
请注意Sneftel关于浮动可能的分数限制的评论。
还要注意的是,它不同于使用绝对的epsilon的方法——这里你不需要担心“数量级”——数字可能是,比如说1e100,或者1e-100,它们总是会被一致地比较,而且你不必为每一种情况更新epsilon。
/// testing whether two doubles are almost equal. We consider two doubles
/// equal if the difference is within the range [0, epsilon).
///
/// epsilon: a positive number (supposed to be small)
///
/// if either x or y is 0, then we are comparing the absolute difference to
/// epsilon.
/// if both x and y are non-zero, then we are comparing the relative difference
/// to epsilon.
bool almost_equal(double x, double y, double epsilon)
{
double diff = x - y;
if (x != 0 && y != 0){
diff = diff/y;
}
if (diff < epsilon && -1.0*diff < epsilon){
return true;
}
return false;
}
我在我的小项目中使用了这个函数,它是有效的,但注意以下几点:
双精度误差可以为你制造惊喜。假设epsilon = 1.0e-6,那么根据上面的代码,1.0和1.000001不应该被认为是相等的,但在我的机器上,函数认为它们是相等的,这是因为1.000001不能精确地转换为二进制格式,它可能是1.0000009xxx。我用1.0和1.0000011测试了它,这次我得到了预期的结果。