比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
Qt实现了两个函数,也许你可以从中学到一些东西:
static inline bool qFuzzyCompare(double p1, double p2)
{
return (qAbs(p1 - p2) <= 0.000000000001 * qMin(qAbs(p1), qAbs(p2)));
}
static inline bool qFuzzyCompare(float p1, float p2)
{
return (qAbs(p1 - p2) <= 0.00001f * qMin(qAbs(p1), qAbs(p2)));
}
您可能需要以下函数,因为
请注意,比较p1或p2为0.0的值是无效的,
也不会比较其中一个值为NaN或无穷大的值。
如果其中一个值总是0.0,则使用qFuzzyIsNull代替。如果一个人
其中的值很可能是0.0,一种解决方案是将两者都加上1.0
值。
static inline bool qFuzzyIsNull(double d)
{
return qAbs(d) <= 0.000000000001;
}
static inline bool qFuzzyIsNull(float f)
{
return qAbs(f) <= 0.00001f;
}
意识到这是一个老话题,但这篇文章是我发现的关于比较浮点数的最直接的文章之一,如果你想探索更多,它也有更详细的参考资料,它的主要站点涵盖了处理浮点数的完整范围的问题《浮点指南:比较》。
我们可以在浮点公差中找到一篇更实用的文章,并指出有绝对公差测试,在c++中归结为:
bool absoluteToleranceCompare(double x, double y)
{
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon() ;
}
及相对耐量试验:
bool relativeToleranceCompare(double x, double y)
{
double maxXY = std::max( std::fabs(x) , std::fabs(y) ) ;
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXY ;
}
文章指出,当x和y较大时,绝对检验失败;当x和y较小时,相对检验失败。假设绝对耐受性和相对耐受性是相同的,综合测试将是这样的:
bool combinedToleranceCompare(double x, double y)
{
double maxXYOne = std::max( { 1.0, std::fabs(x) , std::fabs(y) } ) ;
return std::fabs(x - y) <= std::numeric_limits<double>::epsilon()*maxXYOne ;
}
General-purpose comparison of floating-point numbers is generally meaningless. How to compare really depends on a problem at hand. In many problems, numbers are sufficiently discretized to allow comparing them within a given tolerance. Unfortunately, there are just as many problems, where such trick doesn't really work. For one example, consider working with a Heaviside (step) function of a number in question (digital stock options come to mind) when your observations are very close to the barrier. Performing tolerance-based comparison wouldn't do much good, as it would effectively shift the issue from the original barrier to two new ones. Again, there is no general-purpose solution for such problems and the particular solution might require going as far as changing the numerical method in order to achieve stability.