比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
正如其他人所指出的那样,使用固定指数(例如0.0000001)对于远离该值的值是无用的。例如,如果你的两个值是10000.000977和10000,那么这两个数字之间没有32位浮点值——10000和10000.000977是你可能得到的最接近的值,而不是位对位相同。这里,小于0.0009是没有意义的;你也可以使用直接等式运算符。
同样地,当两个值的大小接近ε时,相对误差增长到100%。
Thus, trying to mix a fixed point number such as 0.00001 with floating-point values (where the exponent is arbitrary) is a pointless exercise. This will only ever work if you can be assured that the operand values lie within a narrow domain (that is, close to some specific exponent), and if you properly select an epsilon value for that specific test. If you pull a number out of the air ("Hey! 0.00001 is small, so that must be good!"), you're doomed to numerical errors. I've spent plenty of time debugging bad numerical code where some poor schmuck tosses in random epsilon values to make yet another test case work.
如果你从事任何类型的数值编程,并认为你需要达到定点的epsilon,请阅读BRUCE关于比较浮点数的文章。
浮点数比较
/// testing whether two doubles are almost equal. We consider two doubles
/// equal if the difference is within the range [0, epsilon).
///
/// epsilon: a positive number (supposed to be small)
///
/// if either x or y is 0, then we are comparing the absolute difference to
/// epsilon.
/// if both x and y are non-zero, then we are comparing the relative difference
/// to epsilon.
bool almost_equal(double x, double y, double epsilon)
{
double diff = x - y;
if (x != 0 && y != 0){
diff = diff/y;
}
if (diff < epsilon && -1.0*diff < epsilon){
return true;
}
return false;
}
我在我的小项目中使用了这个函数,它是有效的,但注意以下几点:
双精度误差可以为你制造惊喜。假设epsilon = 1.0e-6,那么根据上面的代码,1.0和1.000001不应该被认为是相等的,但在我的机器上,函数认为它们是相等的,这是因为1.000001不能精确地转换为二进制格式,它可能是1.0000009xxx。我用1.0和1.0000011测试了它,这次我得到了预期的结果。
在https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon上找到了另一个有趣的实现
#include <cmath>
#include <limits>
#include <iomanip>
#include <iostream>
#include <type_traits>
#include <algorithm>
template<class T>
typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type
almost_equal(T x, T y, int ulp)
{
// the machine epsilon has to be scaled to the magnitude of the values used
// and multiplied by the desired precision in ULPs (units in the last place)
return std::fabs(x-y) <= std::numeric_limits<T>::epsilon() * std::fabs(x+y) * ulp
// unless the result is subnormal
|| std::fabs(x-y) < std::numeric_limits<T>::min();
}
int main()
{
double d1 = 0.2;
double d2 = 1 / std::sqrt(5) / std::sqrt(5);
std::cout << std::fixed << std::setprecision(20)
<< "d1=" << d1 << "\nd2=" << d2 << '\n';
if(d1 == d2)
std::cout << "d1 == d2\n";
else
std::cout << "d1 != d2\n";
if(almost_equal(d1, d2, 2))
std::cout << "d1 almost equals d2\n";
else
std::cout << "d1 does not almost equal d2\n";
}
我使用这个代码。不像上面的答案,这允许一个人
给出一个在代码注释中解释的abs_relative_error。
第一个版本比较复数,使错误
可以用两个矢量之间的夹角来解释
在复平面上具有相同的长度(这给出了一点
洞察力)。然后是2实数的正确公式
数字。
https://github.com/CarloWood/ai-utils/blob/master/almost_equal.h
后者是
template<class T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type
almost_equal(T x, T y, T const abs_relative_error)
{
return 2 * std::abs(x - y) <= abs_relative_error * std::abs(x + y);
}
其中abs_relative_error基本上(两倍)是文献中最接近定义的绝对值:相对错误。但这只是名字的选择。
我认为在复平面中最明显的是。如果|x| = 1, y在x周围形成一个直径为abs_relative_error的圆,则认为两者相等。