比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
我的课程是基于之前发布的答案。非常类似于谷歌的代码,但我使用了一个偏差,将所有NaN值推到0xFF000000以上。这样可以更快地检查NaN。
这段代码是为了演示概念,而不是通用的解决方案。谷歌的代码已经展示了如何计算所有平台特定的值,我不想复制所有这些。我对这段代码做了有限的测试。
typedef unsigned int U32;
// Float Memory Bias (unsigned)
// ----- ------ ---------------
// NaN 0xFFFFFFFF 0xFF800001
// NaN 0xFF800001 0xFFFFFFFF
// -Infinity 0xFF800000 0x00000000 ---
// -3.40282e+038 0xFF7FFFFF 0x00000001 |
// -1.40130e-045 0x80000001 0x7F7FFFFF |
// -0.0 0x80000000 0x7F800000 |--- Valid <= 0xFF000000.
// 0.0 0x00000000 0x7F800000 | NaN > 0xFF000000
// 1.40130e-045 0x00000001 0x7F800001 |
// 3.40282e+038 0x7F7FFFFF 0xFEFFFFFF |
// Infinity 0x7F800000 0xFF000000 ---
// NaN 0x7F800001 0xFF000001
// NaN 0x7FFFFFFF 0xFF7FFFFF
//
// Either value of NaN returns false.
// -Infinity and +Infinity are not "close".
// -0 and +0 are equal.
//
class CompareFloat{
public:
union{
float m_f32;
U32 m_u32;
};
static bool CompareFloat::IsClose( float A, float B, U32 unitsDelta = 4 )
{
U32 a = CompareFloat::GetBiased( A );
U32 b = CompareFloat::GetBiased( B );
if ( (a > 0xFF000000) || (b > 0xFF000000) )
{
return( false );
}
return( (static_cast<U32>(abs( a - b ))) < unitsDelta );
}
protected:
static U32 CompareFloat::GetBiased( float f )
{
U32 r = ((CompareFloat*)&f)->m_u32;
if ( r & 0x80000000 )
{
return( ~r - 0x007FFFFF );
}
return( r + 0x7F800000 );
}
};
使用任何其他建议都要非常小心。这完全取决于上下文。
我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:
The implicit presumption in an algorithm that if a==b and b==c then a==c.
Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS).
The use of the same epsilon for both the cosine of angles and the length of lines!
Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)
就像我说的,这完全取决于上下文和a和b的预期大小。
顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)
同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。
就数量的规模而言:
如果在某种物理意义上,ε是量的大小(即相对值)的一小部分,而A和B类型在同一意义上具有可比性,那么我认为,下面的观点是相当正确的:
#include <limits>
#include <iomanip>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cassert>
template< typename A, typename B >
inline
bool close_enough(A const & a, B const & b,
typename std::common_type< A, B >::type const & epsilon)
{
using std::isless;
assert(isless(0, epsilon)); // epsilon is a part of the whole quantity
assert(isless(epsilon, 1));
using std::abs;
auto const delta = abs(a - b);
auto const x = abs(a);
auto const y = abs(b);
// comparable generally and |a - b| < eps * (|a| + |b|) / 2
return isless(epsilon * y, x) && isless(epsilon * x, y) && isless((delta + delta) / (x + y), epsilon);
}
int main()
{
std::cout << std::boolalpha << close_enough(0.9, 1.0, 0.1) << std::endl;
std::cout << std::boolalpha << close_enough(1.0, 1.1, 0.1) << std::endl;
std::cout << std::boolalpha << close_enough(1.1, 1.2, 0.01) << std::endl;
std::cout << std::boolalpha << close_enough(1.0001, 1.0002, 0.01) << std::endl;
std::cout << std::boolalpha << close_enough(1.0, 0.01, 0.1) << std::endl;
return EXIT_SUCCESS;
}