比较两个双精度浮点数或两个浮点数最有效的方法是什么?

简单地这样做是不正确的:

bool CompareDoubles1 (double A, double B)
{
   return A == B;
}

比如:

bool CompareDoubles2 (double A, double B) 
{
   diff = A - B;
   return (diff < EPSILON) && (-diff < EPSILON);
}

似乎是浪费加工。

有人知道更聪明的浮点比较器吗?


当前回答

'返回fabs(a - b) < EPSILON;

这是可以的,如果:

输入的数量级变化不大 极少数相反的符号可以被视为相等

否则就会给你带来麻烦。双精度数的分辨率约为小数点后16位。如果您正在比较的两个数字在量级上大于EPSILON*1.0E16,那么您可能会说:

return a==b;

我将研究一种不同的方法,假设您需要担心第一个问题,并假设第二个问题对您的应用程序很好。解决方案应该是这样的:

#define VERYSMALL  (1.0E-150)
#define EPSILON    (1.0E-8)
bool AreSame(double a, double b)
{
    double absDiff = fabs(a - b);
    if (absDiff < VERYSMALL)
    {
        return true;
    }

    double maxAbs  = max(fabs(a) - fabs(b));
    return (absDiff/maxAbs) < EPSILON;
}

这在计算上是昂贵的,但有时是需要的。这就是我们公司必须做的事情,因为我们要处理一个工程库,输入可能相差几十个数量级。

无论如何,关键在于(并且适用于几乎所有的编程问题):评估你的需求是什么,然后想出一个解决方案来满足你的需求——不要认为简单的答案就能满足你的需求。如果在您的评估后,您发现fabs(a-b) < EPSILON将足够,完美-使用它!但也要注意它的缺点和其他可能的解决方案。

其他回答

在https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon上找到了另一个有趣的实现

#include <cmath>
#include <limits>
#include <iomanip>
#include <iostream>
#include <type_traits>
#include <algorithm>



template<class T>
typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type
    almost_equal(T x, T y, int ulp)
{
    // the machine epsilon has to be scaled to the magnitude of the values used
    // and multiplied by the desired precision in ULPs (units in the last place)
    return std::fabs(x-y) <= std::numeric_limits<T>::epsilon() * std::fabs(x+y) * ulp
        // unless the result is subnormal
        || std::fabs(x-y) < std::numeric_limits<T>::min();
}

int main()
{
    double d1 = 0.2;
    double d2 = 1 / std::sqrt(5) / std::sqrt(5);
    std::cout << std::fixed << std::setprecision(20) 
        << "d1=" << d1 << "\nd2=" << d2 << '\n';

    if(d1 == d2)
        std::cout << "d1 == d2\n";
    else
        std::cout << "d1 != d2\n";

    if(almost_equal(d1, d2, 2))
        std::cout << "d1 almost equals d2\n";
    else
        std::cout << "d1 does not almost equal d2\n";
}

不幸的是,即使您的“浪费”代码也是不正确的。EPSILON是可以添加到1.0并更改其值的最小值。值1.0非常重要——更大的数字在添加到EPSILON时不会改变。现在,您可以将这个值缩放到您正在比较的数字,以判断它们是否不同。比较两个双精度对象的正确表达式是:

if (fabs(a - b) <= DBL_EPSILON * fmax(fabs(a), fabs(b)))
{
    // ...
}

这是最小值。一般来说,你会想要在计算中考虑噪声,并忽略一些最不重要的位,所以更现实的比较应该是这样的:

if (fabs(a - b) <= 16 * DBL_EPSILON * fmax(fabs(a), fabs(b)))
{
    // ...
}

如果比较性能对您非常重要,并且您知道值的范围,那么您应该使用定点数字。

Qt实现了两个函数,也许你可以从中学到一些东西:

static inline bool qFuzzyCompare(double p1, double p2)
{
    return (qAbs(p1 - p2) <= 0.000000000001 * qMin(qAbs(p1), qAbs(p2)));
}

static inline bool qFuzzyCompare(float p1, float p2)
{
    return (qAbs(p1 - p2) <= 0.00001f * qMin(qAbs(p1), qAbs(p2)));
}

您可能需要以下函数,因为

请注意,比较p1或p2为0.0的值是无效的, 也不会比较其中一个值为NaN或无穷大的值。 如果其中一个值总是0.0,则使用qFuzzyIsNull代替。如果一个人 其中的值很可能是0.0,一种解决方案是将两者都加上1.0 值。

static inline bool qFuzzyIsNull(double d)
{
    return qAbs(d) <= 0.000000000001;
}

static inline bool qFuzzyIsNull(float f)
{
    return qAbs(f) <= 0.00001f;
}

使用任何其他建议都要非常小心。这完全取决于上下文。

我花了很长时间在一个系统中追踪错误,该系统假设|a-b|<epsilon,则a==b。潜在的问题是:

The implicit presumption in an algorithm that if a==b and b==c then a==c. Using the same epsilon for lines measured in inches and lines measured in mils (.001 inch). That is a==b but 1000a!=1000b. (This is why AlmostEqual2sComplement asks for the epsilon or max ULPS). The use of the same epsilon for both the cosine of angles and the length of lines! Using such a compare function to sort items in a collection. (In this case using the builtin C++ operator == for doubles produced correct results.)

就像我说的,这完全取决于上下文和a和b的预期大小。

顺便说一下,std::numeric_limits<double>::epsilon()是“机器epsilon”。它是1.0和下一个用double表示的值之间的差值。我猜它可以用在比较函数中,但只有当期望值小于1时。(这是对@cdv的回答的回应…)

同样,如果你的int算术是双精度的(这里我们在某些情况下使用双精度来保存int值),你的算术是正确的。例如,4.0/2.0将等同于1.0+1.0。只要你不做导致分数(4.0/3.0)的事情,或者不超出int的大小。

这个怎么样?

template<typename T>
bool FloatingPointEqual( T a, T b ) { return !(a < b) && !(b < a); }

我见过各种方法,但从来没有见过这个,所以我也很好奇听到任何评论!