比较两个双精度浮点数或两个浮点数最有效的方法是什么?
简单地这样做是不正确的:
bool CompareDoubles1 (double A, double B)
{
return A == B;
}
比如:
bool CompareDoubles2 (double A, double B)
{
diff = A - B;
return (diff < EPSILON) && (-diff < EPSILON);
}
似乎是浪费加工。
有人知道更聪明的浮点比较器吗?
在https://en.cppreference.com/w/cpp/types/numeric_limits/epsilon上找到了另一个有趣的实现
#include <cmath>
#include <limits>
#include <iomanip>
#include <iostream>
#include <type_traits>
#include <algorithm>
template<class T>
typename std::enable_if<!std::numeric_limits<T>::is_integer, bool>::type
almost_equal(T x, T y, int ulp)
{
// the machine epsilon has to be scaled to the magnitude of the values used
// and multiplied by the desired precision in ULPs (units in the last place)
return std::fabs(x-y) <= std::numeric_limits<T>::epsilon() * std::fabs(x+y) * ulp
// unless the result is subnormal
|| std::fabs(x-y) < std::numeric_limits<T>::min();
}
int main()
{
double d1 = 0.2;
double d2 = 1 / std::sqrt(5) / std::sqrt(5);
std::cout << std::fixed << std::setprecision(20)
<< "d1=" << d1 << "\nd2=" << d2 << '\n';
if(d1 == d2)
std::cout << "d1 == d2\n";
else
std::cout << "d1 != d2\n";
if(almost_equal(d1, d2, 2))
std::cout << "d1 almost equals d2\n";
else
std::cout << "d1 does not almost equal d2\n";
}
在这个版本中,你可以检查,这些数字之间的差异并不比某些分数(比如,0.0001%)更大:
bool floatApproximatelyEquals(const float a, const float b) {
if (b == 0.) return a == 0.; // preventing division by zero
return abs(1. - a / b) < 1e-6;
}
请注意Sneftel关于浮动可能的分数限制的评论。
还要注意的是,它不同于使用绝对的epsilon的方法——这里你不需要担心“数量级”——数字可能是,比如说1e100,或者1e-100,它们总是会被一致地比较,而且你不必为每一种情况更新epsilon。
General-purpose comparison of floating-point numbers is generally meaningless. How to compare really depends on a problem at hand. In many problems, numbers are sufficiently discretized to allow comparing them within a given tolerance. Unfortunately, there are just as many problems, where such trick doesn't really work. For one example, consider working with a Heaviside (step) function of a number in question (digital stock options come to mind) when your observations are very close to the barrier. Performing tolerance-based comparison wouldn't do much good, as it would effectively shift the issue from the original barrier to two new ones. Again, there is no general-purpose solution for such problems and the particular solution might require going as far as changing the numerical method in order to achieve stability.