有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
那么这个呢:
void FindRandomInList(list l)
{
while(1)
{
int rand = Random.next();
if (l.contains(rand))
return;
}
}
随着列表大小的增加,程序的预期运行时间会减少。
其他回答
这里有另一种方法来证明它:为了拥有一个函数,你必须调用这个函数,并且你必须返回一个答案。这需要固定的时间。即使余下的处理过程对较大的输入花费更少的时间,打印出答案(我们可以假设是单个位)至少需要常数时间。
不,这不可能:
随着n在1/n范围内趋于无穷,我们最终得到1/(无穷),这实际上是0。
因此,问题的大-oh类将是O(0)和一个巨大的n,但更接近常数时间和一个低n。这是不明智的,因为唯一可以在比常数时间更快的时间内完成的事情是:
Void nothing() {};
甚至这也是有争议的!
只要你执行了一个命令,你至少在O(1),所以不,我们不能有一个O(1/n)的大哦类!
inline void O0Algorithm() {}
我相信量子算法可以通过叠加“一次”进行多次计算……
我怀疑这是一个有用的答案。
在数值分析中,近似算法在近似公差范围内应具有次常数的渐近复杂度。
class Function
{
public double[] ApproximateSolution(double tolerance)
{
// if this isn't sub-constant on the parameter, it's rather useless
}
}