有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
这里有另一种方法来证明它:为了拥有一个函数,你必须调用这个函数,并且你必须返回一个答案。这需要固定的时间。即使余下的处理过程对较大的输入花费更少的时间,打印出答案(我们可以假设是单个位)至少需要常数时间。
其他回答
好吧,我想了一下,也许有一个算法可以遵循这个一般形式:
你需要计算一个1000节点图的旅行商问题,但是,你也有一个你不能访问的节点列表。随着不可访问节点列表的增加,问题变得更容易解决。
O(1)仅仅表示“常数时间”。
当你给循环[1]添加一个早期退出时,你(在大O符号中)把一个O(1)算法变成了O(n)算法,但使它更快。
诀窍是一般情况下,常数时间算法是最好的,线性算法比指数算法好,但对于n很小的时候,指数算法可能更快。
1:假设这个例子的列表长度是静态的
没有比O(1)小的数 大o符号表示算法的最大复杂度
如果一个算法的运行时间是n³+ n²+ n + 5那么它就是O(n³) 低次在这里根本不重要,因为n ->正无穷,n^2与n^3相比是无关的
同样地,当n -> Inf时,O(1/n)与O(1)相比是不相关的,因此3 + O(1/n)将与O(1)相同,从而使O(1)的计算复杂度最小
你不能低于O(1)但是O(k) k小于N是可能的。我们称之为次线性时间算法。在某些问题中,次线性时间算法只能给出特定问题的近似解。然而,有时,一个近似解就可以了,可能是因为数据集太大了,或者计算所有数据的计算成本太高了。
如果不管输入数据如何,答案都是一样的,那么你就有一个O(0)算法。
或者换句话说——在提交输入数据之前,答案就已经知道了 -这个功能可以优化-所以O(0)