有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

你不能低于O(1)但是O(k) k小于N是可能的。我们称之为次线性时间算法。在某些问题中,次线性时间算法只能给出特定问题的近似解。然而,有时,一个近似解就可以了,可能是因为数据集太大了,或者计算所有数据的计算成本太高了。

其他回答

O(1/n)并不小于O(1)这基本上意味着你拥有的数据越多,算法运行得越快。假设你有一个数组,如果它小于10100个元素就填充它,如果多于10100个元素就什么都不做。这个当然不是O(1/n),而是O(-n):)太糟糕了,O大符号不允许负数。

如果解决方案存在,它可以在常数时间=立即准备和访问。例如,如果您知道排序查询是针对倒序的,则使用LIFO数据结构。然后,假设选择了适当的模型(LIFO),数据就已经排序了。

从我之前学习的大O符号来看,即使你需要1步(比如检查一个变量,做一个赋值),那也是O(1)。

注意,O(1)和O(6)是一样的,因为“常数”并不重要。这就是为什么O(n)和O(3n)是一样的。

如果你需要1步,那就是O(1)。因为你的程序至少需要1步,所以算法的最小值是O(1)。除非我们不这样做,那么它是O(0),对吧?如果我们做任何操作,那么它就是O(1)这是它能达到的最小值。

(如果我们选择不这样做,那么它可能成为一个禅宗或道的问题……在编程领域,O(1)仍然是最小值)。

或者这样怎么样:

程序员:老板,我找到了一个在O(1)时间内完成的方法! 老板:没必要,今天早上我们就要破产了。 程序员:哦,那么它就变成了O(0)。

我看到一个算法的上限是O(1/n):

由于程序外部的原因(可能是硬件的原因,也可能是处理器中的其他核心的原因),有大量的输入正在发生变化,你必须选择一个随机但有效的输入。

现在,如果它没有变化,你可以简单地列出一个项目列表,随机选择一个,然后得到O(1)次。然而,数据的动态性质使我们无法列出列表,您只能随机探测并测试探测的有效性。(请注意,从本质上讲,不能保证返回时答案仍然有效。这仍然是有用处的——比如游戏中的单位AI。它可以射击在扣动扳机时从视线中消失的目标。)

它的最差情况性能为无穷大,但平均情况性能随着数据空间的填满而下降。

好吧,我想了一下,也许有一个算法可以遵循这个一般形式:

你需要计算一个1000节点图的旅行商问题,但是,你也有一个你不能访问的节点列表。随着不可访问节点列表的增加,问题变得更容易解决。